Preparatory Exercises for Integrals

Problem 1. Find the anti-derivatives of the following functions in their domain.
(1) $x e^{x}+\sin x$
(2) $x .2^{x}$
(3) $\ln x$
(4) $\tan ^{-1} x$
(5) $\frac{1}{x^{2}-5 x+6}$

Problem 2. Compute the following integrals.
(6) $\int_{-3}^{6}\left|t^{2}-4\right| d t$
($\left.\mathbf{7}^{*}\right) \int_{0}^{\pi} \cos (99 \theta) \sin (101 \theta) d \theta$
(8) $\int_{0}^{\frac{\pi}{4}} \sec ^{2}(y) \sqrt{2+\tan (y)} d y$

Problem 3. Without integrating, determine whether the following integral exists or not.
(9) $\int_{1}^{\infty} \frac{d x}{\sqrt{x+1}}$
\star Compare it to the other easier integrals and use convergence/divergence of the sequences that you know.

Problem 4. Compute the following indefinite integrals. (i.e., find an antiderivative for each of the functions in front of \int)
(10) $\int \frac{\cos x}{\sin x(1-\sin x)} d x$
(11) $\int \frac{2-x}{x^{2}+1} d x$
(12) $\int \sin (\ln x) d x$
(13*) $\int \frac{\tan ^{3}(\ln x)}{x} d x$

Problem 5. Decide that which of the following integrals exists and which does not. Explain your answer and find the existing ones.
(14) $\int_{2}^{4} \frac{d x}{(x-3)^{3}}$
(15) $\int_{1}^{\infty} \frac{1}{x \ln x} d x$
(16) $\int_{0}^{\infty} \frac{1}{4+x^{2}} d x$

Problem 6. Find the area bounded by the x -axis and the given curve:
(17) $4 \sin x \cos ^{3} x \quad x \in\left[0, \frac{\pi}{2}\right]$

Problem 7. Use integral to compute the length of the curve $C=i m(\gamma)$, where $\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ is defined by $\gamma(t)=(\sin t, \cos t)$. Does that confirm your previous knowledge on the length of the unit circle?

Problem 8. What is the length of the curve $y=\frac{1}{2} x^{2}$ for $x \in[0,1]$.

Good Luck.

