Preparatory Exercises for Integrals

SS2020 - Analysis 2 - University of Leipzig Mahsa Sayyary Namin

Problem 1. Find the anti-derivatives of the following functions in their domain.

(1) $xe^{x} + \sin x$ (2) $x.2^{x}$ (3) lnx(4) $tan^{-1}x$ (5) $\frac{1}{x^{2}-5x+6}$

Problem 2. Compute the following integrals.

(6)
$$\int_{-3}^{6} |t^2 - 4| dt$$

(7*) $\int_{0}^{\pi} \cos(99\theta) \sin(101\theta) d\theta$
(8) $\int_{0}^{\frac{\pi}{4}} \sec^2(y) \sqrt{2 + \tan(y)} dy$

Problem 3. Without integrating, determine whether the following integral exists or not.

(9)
$$\int_1^\infty \frac{dx}{\sqrt{x+1}}$$

 \star Compare it to the other easier integrals and use convergence/divergence of the sequences that you know.

Problem 4. Compute the following indefinite integrals. (i.e., find an antiderivative for each of the functions in front of \int)

(10)
$$\int \frac{\cos x}{\sin x(1-\sin x)} dx$$

(11)
$$\int \frac{2-x}{x^2+1} dx$$

(12)
$$\int \sin(\ln x) dx$$

(13*)
$$\int \frac{\tan^3(\ln x)}{x} dx$$

Problem 5. Decide that which of the following integrals exists and which does not. Explain your answer and find the existing ones.

(14)
$$\int_{2}^{4} \frac{dx}{(x-3)^{3}}$$

(15) $\int_{1}^{\infty} \frac{1}{x \ln x} dx$
(16) $\int_{0}^{\infty} \frac{1}{4+x^{2}} dx$

Problem 6. Find the area bounded by the x-axis and the given curve:

(17) $4\sin x \cos^3 x$ $x \in [0, \frac{\pi}{2}]$

Problem 7. Use integral to compute the length of the curve $C = im(\gamma)$, where $\gamma : [0, 2\pi] \to \mathbb{R}^2$ is defined by $\gamma(t) = (\sin t, \cos t)$. Does that confirm your previous knowledge on the length of the unit circle?

Problem 8. What is the length of the curve $y = \frac{1}{2}x^2$ for $x \in [0, 1]$.