

Problem Sheet 12

Due Date: 08.06.2020, 12:00 UTC+2 (CEST)

Problem 1. [4 pts] Let $[a, b] \subset \mathbb{R}$, let $x_0 \in \mathbb{R}$ be such that $x_0 \in [a, b]$. Show that the following holds

$$f \in \mathcal{R} \text{ over } [a, b] \iff \begin{cases} f \in \mathcal{R} \text{ over } [a, x_0] \\ f \in \mathcal{R} \text{ over } [x_0, b] \end{cases}$$

and then $\int_{a}^{b} f = \int_{a}^{x_{0}} f + \int_{x_{0}}^{b} f$.

Problem 2. [1+2 pts] Let $f \in \mathcal{R}$. Show that: (a) sinf, (b) min(f, 0) are in \mathcal{R} .

Problem 3. [2+2 pts]

(a) Let

$$f(x) = \begin{cases} -1 & \text{ for } x = 0\\ 0 & \text{ for } x \neq 0 \end{cases}$$

Show that $f \in \mathcal{R}$ and that $\int_{-1}^{1} f = 0$.

(b) Let $g: [-1,1] \to (-\infty,0]$ be continuous. Show that

$$\int_{-1}^{1} g \ge 0 \implies \forall_{x \in [-1,1]} g(x) = 0$$

Why does the result for g does not hold for f?

Problem 4. [3 pts] Consider

$$f(x) = \begin{cases} 1 & \text{for } x \in \mathbb{Q} \\ -1 & \text{for } x \notin \mathbb{Q} \end{cases}$$

does f belong to \mathcal{R} over [0,1]? Does f^2 belong to \mathcal{R} over [0,1]?

Problem 5. [4 pts] Suppose $f \in \mathcal{R}$ over [1/n, 1] for any $n \in \mathbb{N}$ (a) does $\lim_{n\to\infty} \int_{\frac{1}{n}}^{1} f$ always exist? (b) if $\lim_{n\to\infty} \int_{\frac{1}{n}}^{1} f$ exists, does it mean that $f \in \mathcal{R}$ over [0, 1]? (c) if $f \in \mathcal{R}$ over [0, 1], do we have $\lim_{n\to\infty} \int_{\frac{1}{n}}^{1} f = \int_{0}^{1} f$?