Problem Sheet 12

Due Date: 08.06.2020, 12:00 UTC+2 (CEST)
Problem 1. [4 pts] Let $[a, b] \subset \mathbb{R}$, let $x_{0} \in \mathbb{R}$ be such that $x_{0} \in[a, b]$. Show that the following holds

$$
f \in \mathcal{R} \text { over }[a, b] \Longleftrightarrow\left\{\begin{array}{l}
f \in \mathcal{R} \text { over }\left[a, x_{0}\right] \\
f \in \mathcal{R} \text { over }\left[x_{0}, b\right]
\end{array}\right.
$$

and then $\int_{a}^{b} f=\int_{a}^{x_{0}} f+\int_{x_{0}}^{b} f$.
Problem 2. $[\mathbf{1}+\mathbf{2} \mathrm{pts}]$ Let $f \in \mathcal{R}$. Show that: (a) $\sin f$, (b) $\min (f, 0)$ are in \mathcal{R}.
Problem 3. $[2+2 \mathrm{pts}]$
(a) Let

$$
f(x)= \begin{cases}-1 & \text { for } x=0 \\ 0 & \text { for } x \neq 0\end{cases}
$$

Show that $f \in \mathcal{R}$ and that $\int_{-1}^{1} f=0$.
(b) Let $g:[-1,1] \rightarrow(-\infty, 0]$ be continuous. Show that

$$
\int_{-1}^{1} g \geq 0 \Longrightarrow \forall_{x \in[-1,1]} g(x)=0
$$

Why does the result for g does not hold for f ?
Problem 4. [3 pts] Consider

$$
f(x)= \begin{cases}1 & \text { for } x \in \mathbb{Q} \\ -1 & \text { for } x \notin \mathbb{Q}\end{cases}
$$

does f belong to \mathcal{R} over $[0,1]$? Does f^{2} belong to \mathcal{R} over $[0,1]$?
Problem 5. [4 pts] Suppose $f \in \mathcal{R}$ over $[1 / n, 1]$ for any $n \in \mathbb{N}$
(a) does $\lim _{n \rightarrow \infty} \int_{\frac{1}{n}}^{1} f$ always exist?
(b) if $\lim _{n \rightarrow \infty} \int_{\frac{1}{n}}^{1} f$ exists, does it mean that $f \in \mathcal{R}$ over $[0,1]$?
(c) if $f \in \mathcal{R}$ over $[0,1]$, do we have $\lim _{n \rightarrow \infty} \int_{\frac{1}{n}}^{1} f=\int_{0}^{1} f$?

