Problem Sheet 10

Due Date: 04.05.2020, 12:00 UTC+2 (CEST)
Problem 1. [1 pt] Show that for any two tensors $S: V \rightarrow V, T: V \rightarrow V$, with V being a finite-dimensional linear space

$$
\operatorname{tr}(S T)=\operatorname{tr}(T S)
$$

Problem 2. $[\mathbf{1}+\mathbf{1}+\mathbf{1} \mathrm{pts}]$ Let e, f be orthogonal unit vectors in \mathbb{R}^{3}. (i) Show that

$$
(\mathbb{1}-e \otimes e) v=-e \times(e \times v)
$$

for any $v \in \mathbb{R}^{3}$. (ii) What does $(\mathbb{1}-e \otimes e)$ mean geometrically? (iii) What does $e \otimes e+f \otimes f$ mean geometrically?

Problem 3. [2 pts] Let us denote by sym the symmetric part of a tensor. Show

$$
\operatorname{sym}\left(A^{T} B A\right)=A^{T} \operatorname{sym}(B) A,
$$

where A, B are tensors $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$.
Problem 4. $[\mathbf{3}+\mathbf{2}+\mathbf{3} \mathrm{pts}]$ Consider an arbitrary skew-symmetric tensor $\Omega: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.
(i) Show that Ω be represented by a vector ω as follows:

$$
\forall_{v \in \mathbb{R}^{3}} \quad \Omega v=\omega \times v
$$

(ii) Next, show that cofactor of Ω equals $\omega \otimes \omega$.
(iii) Prove that $\mathbb{1}+\Omega$ is always invertible.

Problem 5. [$\mathbf{1} \mathrm{pts}]$ Show that for any symmetric tensor $S: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and antisymmetric tensor $W: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ it holds

$$
S: W=0 .
$$

Problem 6. [4 pts] Let $f_{i, j}$ be differentiable functions on $\mathbb{R}, i, j=1, \ldots, n$. Define F to be the $n \times n$-matrix with entries $f_{i, j}$. Show that

$$
(\operatorname{det} F)^{\prime}=\sum_{i=1}^{n} \operatorname{det}\left[\begin{array}{ccc}
f_{1,1} & \ldots & f_{1, n} \\
\vdots & \ldots & \vdots \\
f_{i-1,1} & \ldots & f_{i-1, n} \\
f_{i, 1}^{\prime} & \ldots & f_{i, n}^{\prime} \\
f_{i+1,1} & \ldots & f_{i+1, n} \\
\vdots & \ldots & \vdots \\
f_{n, 1} & \ldots & f_{n, n}
\end{array}\right]
$$

