

Problem Sheet 10

Due Date: 04.05.2020, 12:00 UTC+2 (CEST)

Problem 1. [1 pt] Show that for any two tensors $S: V \to V, T: V \to V$, with V being a finite-dimensional linear space

tr(ST) = tr(TS)

Problem 2. [1+1+1 pts] Let e, f be orthogonal unit vectors in \mathbb{R}^3 . (i) Show that

$$(1 - e \otimes e)v = -e \times (e \times v)$$

for any $v \in \mathbb{R}^3$. (ii) What does $(1 - e \otimes e)$ mean geometrically? (iii) What does $e \otimes e + f \otimes f$ mean geometrically?

Problem 3. [2 pts] Let us denote by sym the symmetric part of a tensor. Show

$$sym(A^TBA) = A^Tsym(B)A,$$

where A, B are tensors $\mathbb{R}^d \to \mathbb{R}^d$.

Problem 4. [3+2+3 pts] Consider an arbitrary skew-symmetric tensor $\Omega : \mathbb{R}^3 \to \mathbb{R}^3$. (i) Show that Ω be represented by a vector ω as follows:

$$\forall_{v \in \mathbb{R}^3} \quad \Omega v = \omega \times v.$$

(ii) Next, show that cofactor of Ω equals $\omega \otimes \omega$.

(iii) Prove that $1 + \Omega$ is always invertible.

Problem 5. [1 pts] Show that for any symmetric tensor $S : \mathbb{R}^d \to \mathbb{R}^d$ and antisymmetric tensor $W : \mathbb{R}^d \to \mathbb{R}^d$ it holds

$$S: W = 0.$$

Problem 6. [4 pts] Let $f_{i,j}$ be differentiable functions on \mathbb{R} , i, j = 1, ..., n. Define F to be the $n \times n$ -matrix with entries $f_{i,j}$. Show that

$$(detF)' = \sum_{i=1}^{n} det \begin{bmatrix} f_{1,1} & \cdots & f_{1,n} \\ \vdots & \cdots & \vdots \\ f_{i-1,1} & \cdots & f_{i-1,n} \\ f'_{i,1} & \cdots & f'_{i,n} \\ f_{i+1,1} & \cdots & f_{i+1,n} \\ \vdots & \cdots & \vdots \\ f_{n,1} & \cdots & f_{n,n} \end{bmatrix}$$