Solution of Problem 4c on Series 2

Let $U \subset \mathbb{R}^n$ be an open subset. Any smooth map

$$T: U \to \bigotimes^2 (\mathbb{R}^n)^* \otimes \mathbb{R}^n, \quad p \mapsto T_p,$$

is called a 2-1-tensor field, also briefly a 2-1-tensor. Note that for any vector fields $X, Y \in \mathcal{X}(U)$, we have that T(X, Y) is again a vector field by

$$T(X,Y)(p) = T_p(X(p),Y(p)).$$

So, every 2-1-tensor field T induces an \mathbb{R} -bilinear operation $T: \mathcal{X}(U) \times \mathcal{X}(U) \to \mathcal{X}(U)$. Moreover, we necessarily have for any functions $f, g \in C^{\infty}(U, \mathbb{R})$

(1)
$$T(fX,gY) = fgT(X,Y),$$

because by the multilinearity of 2-1-tensors in $\bigotimes^2 (\mathbb{R}^n)^* \otimes \mathbb{R}^n$ we have

$$T_p(f(p)X(p),g(p)Y(p)) = f(p)g(p)T_p(X(p),Y(p)).$$

However, for any connection $\nabla \colon \mathcal{X}(U) \times \mathcal{X}(U) \to \mathcal{X}(U)$ we have

(2)
$$\nabla_{fX}gY = fg\nabla_X Y + fX(g)Y,$$

i.e.

$$(\nabla_{fX}gY)(p) = f(p)g(p)(\nabla_XY)(p) + f(p)(X(g))(p)Y(p).$$

So, the extra term fX(g)Y prevents ∇ from being a 2-1-tensor. If we now take two different connections ∇ , ∇' , however, we see from (2) for the expression $S(X,Y) := \nabla_X Y - \nabla'_X Y$ that

$$S(fX,gY) = fg(\nabla_X Y - \nabla'_X Y) = fgS(X,Y).$$

So, the necessary condition (1) for the tensor property is fulfilled. (1) is in fact also a sufficient condition if S is \mathbb{R} -linear:

Namely, if we represent vector fields X, Y in local coordinates (x^1, \ldots, x^n) as

$$X = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}} \quad Y = \sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}},$$

with coefficient functions $(a^i)_{i=1,\dots,n}$ and $(b^i)_{i=1,\dots,n}$, we see that

$$S(X,Y) = \sum_{i,j} a^i b^j S(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j})$$

so that S(X, Y) at a point p depends only on the values of a^i and b^j at p itself. Hence, for any X, X' and Y, Y' with X(p) = X'(p) and Y(p) = Y'(p), we have S(X, Y)(p) = S(X', Y')(p). Thus, S is in fact a 2-1-tensor field.

Similarly, we compute for the torsion T_∇ of a connection ∇

$$T_{\nabla}(fX, gY) = \nabla_{fX}(gY) - \nabla_{gY}(fX) - [fX, gY]$$

= $fg\nabla_X Y + fX(g)Y - gf\nabla_Y X - gY(f)X$
 $- fgX \circ Y + gfY \circ X - fX(g)Y + gY(f)X$
= $fg(\nabla_X Y - \nabla_Y X) - fg[X, Y]$
= $fgT_{\nabla}(X, Y)$.

thus, T_{∇} satisfies the same property (1) and hence is also a 2-1-tensor field.