Solution of Problem 4c on Series 2

Let $U \subset \mathbb{R}^{n}$ be an open subset. Any smooth map

$$
T: U \rightarrow \bigotimes^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}, \quad p \mapsto T_{p}
$$

is called a 2-1-tensor field, also briefly a 2-1-tensor.
Note that for any vector fields $X, Y \in \mathcal{X}(U)$, we have that $T(X, Y)$ is again a vector field by

$$
T(X, Y)(p)=T_{p}(X(p), Y(p))
$$

So, every 2-1-tensor field T induces an \mathbb{R}-bilinear operation $T: \mathcal{X}(U) \times \mathcal{X}(U) \rightarrow \mathcal{X}(U)$. Moreover, we necessarily have for any functions $f, g \in C^{\infty}(U, \mathbb{R})$

$$
\begin{equation*}
T(f X, g Y)=f g T(X, Y) \tag{1}
\end{equation*}
$$

because by the multilinearity of 2-1-tensors in $\bigotimes^{2}\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}$ we have

$$
T_{p}(f(p) X(p), g(p) Y(p))=f(p) g(p) T_{p}(X(p), Y(p))
$$

However, for any connection $\nabla: \mathcal{X}(U) \times \mathcal{X}(U) \rightarrow \mathcal{X}(U)$ we have

$$
\begin{equation*}
\nabla_{f X} g Y=f g \nabla_{X} Y+f X(g) Y \tag{2}
\end{equation*}
$$

i.e.

$$
\left(\nabla_{f X} g Y\right)(p)=f(p) g(p)\left(\nabla_{X} Y\right)(p)+f(p)(X(g))(p) Y(p)
$$

So, the extra term $f X(g) Y$ prevents ∇ from being a 2-1-tensor.
If we now take two different connections ∇, ∇^{\prime}, however, we see from (2) for the expression $S(X, Y):=$ $\nabla_{X} Y-\nabla_{X}^{\prime} Y$ that

$$
S(f X, g Y)=f g\left(\nabla_{X} Y-\nabla_{X}^{\prime} Y\right)=f g S(X, Y)
$$

So, the necessary condition (1) for the tensor property is fulfilled. (1) is in fact also a sufficient condition if S is \mathbb{R}-linear:
Namely, if we represent vector fields X, Y in local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ as

$$
X=\sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}} \quad Y=\sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}}
$$

with coefficient functions $\left(a^{i}\right)_{i=1, \ldots, n}$ and $\left(b^{i}\right)_{i=1, \ldots, n}$, we see that

$$
S(X, Y)=\sum_{i, j} a^{i} b^{j} S\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)
$$

so that $S(X, Y)$ at a point p depends only on the values of a^{i} and b^{j} at p itself. Hence, for any X, X^{\prime} and Y, Y^{\prime} with $X(p)=X^{\prime}(p)$ and $Y(p)=Y^{\prime}(p)$, we have $S(X, Y)(p)=S\left(X^{\prime}, Y^{\prime}\right)(p)$. Thus, S is in fact a 2-1-tensor field.

Similarly, we compute for the torsion T_{∇} of a connection ∇

$$
\begin{aligned}
T_{\nabla}(f X, g Y)= & \nabla_{f X}(g Y)-\nabla_{g Y}(f X)-[f X, g Y] \\
= & f g \nabla_{X} Y+f X(g) Y-g f \nabla_{Y} X-g Y(f) X \\
& -f g X \circ Y+g f Y \circ X-f X(g) Y+g Y(f) X \\
= & f g\left(\nabla_{X} Y-\nabla_{Y} X\right)-f g[X, Y] \\
= & f g T_{\nabla}(X, Y) .
\end{aligned}
$$

thus, T_{∇} satisfies the same property (1) and hence is also a 2-1-tensor field.

