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Problem 3.1

Let M be an n-dimensional manifold with a smooth atlas A = {(φi, Ui, Vi) | i ∈ I} and p ∈ M .
Recall the following definition of the tangent space of M at p: Two smooth curves γ, γ̃ : (−ε, ε)→
M with γ(0) = γ̃(0) = p are considered equivalent if

∀f ∈ C∞(M,R) :
d

dt

∣∣∣∣
t=0

(f ◦ γ)(0) =
d

dt

∣∣∣∣
t=0

(f ◦ γ̃)(0) .

Then denote the equivalence class of γ by [γ]p = γ̇(0) and the space of all equivalence classes as
the tangent space

TpM := { [γ]p | γ : (−ε, ε)→M, γ(0) = p } .

Secondly, let Ip := { i ∈ I | p ∈ Ui} and denote the differential of the coordinate change by

ϕij := D(φi ◦ φ−1j )(φj(p)), p ∈ Ui ∩ Uj , i, j ∈ Ip .

In particular, we have ϕij ◦ ϕjk = ϕik for all i, j, k ∈ Ip. Then define

T̃pM := {(vi)i∈Ip ∈ (Rn)Ip | vi = ϕij(vj) f.a. i, j ∈ Ip } .

Thirdly, consider the vector space of derivations on the space of smooth functions on M ,

X(M) := {X ∈ Hom(C∞(M,R), C∞(M,R)) |X(fg) = fX(g)+gX(f), f.a. f, g ∈ C∞(M,R) } .

Consider two derivations X,Y ∈ X(M) as equivalent with respect to p ∈ M if and only if
X(f)(p) = X(g)(p) for all f, g ∈ C∞(M,R), and denote the R-vector space of equivalence
classes [X]p by

T̄pM := {[X]p |X ∈ X(M) } .

Show that all three tangent space definitions are equivalent in a canonical way, e.g. find isomor-
phisms

ψ1 : T̄pM
∼=−→ TpM, ψ2 : TpM

∼=−→ T̃pM, ψ3 : T̃pM
∼=−→ T̄pM ,

which do not depend on choices of bases or coordinate charts and such that ψ3 ◦ ψ2 ◦ ψ1 = id.
Hint: For ψ1 choose an arbitrary coordinate chart with p ∈ Ui and express the derivation in
those coordinates. There, by a proposition from the class, it can be identified with a vector field
which locally at p defines an integral curve. Show that the equivalence class of that curve on M
is independent of the chosen coordinate chart. For ψ3 work again in local coordinates and show
that a given vector vi ∈ Rn can be extended to a vector field such that its equivalence class [X]p
at p is well-defined and independent of the coordinate chart. 4 pts.
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Problem 3.2

(a) Let ϕ and ϕ′ be two inertial spacetime coordinate charts (fulfilling the axioms (G.N. 1...4))
and let t 7→ x(t) be the coordinate trajectory of a pointlike object (“particle”) with respect to
ϕ. Assuming that the particle moves free of interaction, show that the coordinate trajectory
t′ 7→ x′(t′) with respect to ϕ′ is given by a Galilei transformation, i.e.

t′ = t+ s , x′(t′) = Dx(t) + v · t+ x0

for all t ∈ R, with suitable D ∈ O(3), v , x0 ∈ R3, and s ∈ R.

(You should derive this without using that the transition functions of inertial coordinate charts
are given by Galilei transformations and prove it directly by going back to the definition of inertial
coordinate charts. Thereby, you prove that the transition functions of inertial coordinate charts
are exactly given by Galilei transformations.)

(b) Consider the case as in (a), where now the spacetime coordinate charts are assumed to fulfill
(G.N. 1,2,4), but where the charts need not fulfill (G.N. 3), so they need not be inertial (but
(G.N. 4) is extended to be valid for non-inertial charts fulfilling (G.N. 1,2)). Show that in this
case, it holds that the coordinate trajectory t′ 7→ x′(t′) is related to the coordinate trajectory
t 7→ x(t) by

t′ = t+ s , x′(t′) = D(t)x(t) + r(t) (?)

with functions t 7→ D(t) ∈ O(3) and t 7→ r(t) ∈ R3 (t ∈ R). Discuss the degree(s) of continuous
differentiability of these maps. (And related with that, you may discuss why usually one restricts
attention to D(t) ∈ SO(3).)

(c) In the situation of (b), suppose that t′ = t, and that ϕ is an inertial coordinate chart and
ϕ′ is a spacetime coordinate chart fulfilling (G.N. 1,2,4), so that (?) holds for the coordinate
trajectories of any particle. Suppose that the equation of motion of the inertial coordinate
trajectory is

m
d2

dt2
x(t) = F (t, x(t), ẋ(t))

with a (suitably smooth – at least continuous) function F : R × R3 × R3 → R3. (We use the
notation ẋ(t) = d

dtx(t).)

Then in the other spacetime coordinates, the trajectory fulfills

m
d2

dt2
x′(t) = F ′(t, x′(t), ẋ′(t))

Express F ′(t, x′(t), ẋ′(t)) using F as well as D(t), r(t) and suitable derivatives thereof, and x′(t)
and ẋ′(t). (Interpret the terms that arise, like the Centrifugal “force” and the Coriolis “force”
– however this is not actually part of the the problem as such.) 2 + 2 + 2 = 6 pts.

Problem 3.3

Two Lagrange functions L1 and L2 for an n-particle system with holonomic constraints (f de-
grees of freedom) are said to differ by a gauge transformation if for every C2 configuration space
trajectory t 7→ q(t) the following holds:

t 7→ q(t) fulfills the Euler-Lagrange equations w.r.t. L1 if and only if t 7→ q(t) fulfills the Euler-
Lagrange equations w.r.t. L2.

Show that, if M : R × V → R is C3 (where V ⊂ Rf is the (coordinatized) configuration space)
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and if

L2(t, q, u) = L1(t, q, u) +

f∑
k=1

(
∂

∂qk
M(t, q)

)
uk +

∂

∂t
M(t, q) (t ∈ R , (q, u) ∈ V × Rf ' TV) ,

then L1 and L2 differ by a gauge transformation. 2 pts.

Problem 3.4

Bead on the rotating wire. A bead of mass m (pointlike idealized) is bound to a wire (ide-
alized as infinitesimally thin) on which it can move without friction. The wire is shaped into
a planar circle of radius R. The wire is “standing”, i.e. the x3 axis passes through antipodal
points (and the radial center) of the wire, and the wire rotates around the x3 axis with constant
angular velocity ω. The bead is subject to a homogeneous gravitional field along the x3 axis in
opposite direction, with a corresponding external gravitational potential V (x3) = mgx3 (where
g = 9.81m/s2 is the gravitational acceleration).

(a) Determine suitable generalized coordinates and a Lagrange function for the motion of the
bead.

(b) Derive the Euler-Lagrange equations for the motion of the bead.

(c) Special solutions to the Euler-Lagrange equations correspond to equilibrium points of the
bead, i.e. to configuration space trajectories such that the bead is at rest in coordinates
with respect to which the wire is at rest (“co-rotating coordinates”). Determine these
equilibrium points.

4 pts.

Solutions due Wed 6 Nov in the exercise class.
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