Problem Sheet 13

Due Date: 29.06.2020, 12:00 UTC+2 (CEST)
Problem 1. [2 pts] Use the definition of the Riemann integral to compute $\int_{-1}^{1} x^{2} d x$.
Problem 2. $[2+2+2+3$ pts $]$ Compute the following integrals

$$
\int_{0}^{2}|1-x| d x, \quad \int_{0}^{2 \pi} x^{2} \cos x d x, \quad \int_{0}^{\ln 2} \sqrt{e^{x}-1} d x, \quad \int_{2}^{3} \frac{1}{6^{x}+1} d x
$$

Problem 3. $[2+2+2+3 \mathrm{pts}]$
Compute the following integrals

$$
\int_{0}^{1} \frac{1}{\sqrt{1-x}} d x, \quad \int_{-10}^{10} \frac{d x}{2 x^{2}+9 x-5} d x, \quad \int_{0}^{\infty} x^{2} e^{-x} d x
$$

Does the integral $\int_{0}^{\infty} x^{p} e^{-x} d x$ converge for any $p \geq 0$? Does it converge for any $p<0$?
Problem 4. $[2+2+3 \mathrm{pts}]$ Find an antiderivative (including its domain) of

$$
x^{10} \ln x, \quad \sin ^{5} x \cos x, \quad \sin ^{4} x
$$

Problem 5. [4 pts] Compute length of the curve formed by points $x \in \mathbb{R}^{2}$ as follows: distance of x from the origin equals $1+\cos \theta$, where $\theta \in[0,2 \pi]$ is the angle between the axis $O X$ and the line linking x and the origin.

Problem 6. $[\mathbf{3} \mathrm{pts}]$ State and prove a generalisation of the Jensen inequality from $[0,1] \subset \mathbb{R}$ (that appears in lecture notes) to any $[a, b] \subset \mathbb{R}$ with a, b finite real numbers.

Problem 7. [4 pts] Let $a>b$ be two real numbers. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be such that: $f(a)=f(b)=0$, derivative f^{\prime} is continuous on $[a, b]$, and

$$
\int_{a}^{b} f^{2}(x) d x=1
$$

Prove that

$$
\int_{a}^{b} x f(x) f^{\prime}(x) d x=-\frac{1}{2} \quad \text { and } \quad\left(\int_{a}^{b}\left(f^{\prime}(x)\right)^{2} d x\right)\left(\int_{a}^{b} x^{2} f^{2}(x) d x\right)>\frac{1}{4}
$$

Problem 8. [* 5 pts] Fix a function f that is Riemann integrable on $[a, b], a, b$ finite real numbers. Fix any $\epsilon>0$. Prove that there exists a polynomial $g:[a, b] \rightarrow \mathbb{R}$ such that

$$
\int_{a}^{b}|f(x)-g(x)|^{2} d x \leq \epsilon
$$

