Problem Sheet 15

Due Date: 20.07.2020, 12:00 UTC+2 (CEST)
Bonus! each point will be *doubled: Each problem is worth $x+x^{*}$ points, where x is the amount in [] below. So the maximum that counts to your exam admission percentage of this sheet is 21 , but you can obtain even 42 points!

Problem 1. $[\mathbf{3} \mathrm{pts}]$ Compute the directional derivative of the function $F=\left(F_{1}, F_{2}\right)$, where

$$
F_{1}(x, y, z)=\sin (x+y)-e^{z}-x, \quad F_{1}(x, y, z)=\ln z-5 x^{z}
$$

$(1,-1,1)$ in the direction $v=(1,0,3)$
Problem 2. [5 pts] Find the Frenet frame of the curve C given by the following parametrisation

$$
\gamma(t)=(\sin t, \cos t, 2 t)
$$

(warning: is the above the arc-length parametrisation?)
Problem 3. [3 pts]
Find the tangent and normal spaces to the ellipsoid:

$$
\left\{(x, y, z) \left\lvert\, \frac{x^{2}}{3}+\frac{y^{2}}{2}+\frac{z^{2}}{6}=5\right.\right\}
$$

at the point $(1,1,5)$.
Problem 4. $[\mathbf{3}+\mathbf{3} \mathrm{pts}]$ Find local extrema of the following functions:

- $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=(x+y) e^{-\left(x^{2}+y^{2}\right)}$
- $f:[0,1]^{2} \rightarrow \mathbb{R}, \quad f(x, y)=x^{3}+y^{3}-3 x y$

Problem 5. [4 pts] Consider

$$
\left(x^{2}+y^{2}+z^{4}\right)^{\frac{1}{2}}-\cos y-\cos z=0
$$

Is y a dependent variable around the point $(2,0,0)$? If yes, compute the differential of the implicit function at $\left(x_{0}, z_{0}\right)=(2,0)$.
Is x a dependent variable around the point $(2,0,0)$? If yes, compute the differential of the implicit function at $\left(y_{0}, z_{0}\right)=(0,0)$.

