Problem sheet 11.

Solution 2:

$$S: \mathbb{R}^3 \longrightarrow \mathbb{R}$$
 $S(xy_1 z) = (x-y_1 x+3y+z, 2z)$
 $S = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

$$S = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\det (5-\lambda I) = \det \begin{bmatrix} 1-\lambda & -1 & 0 \\ 1 & 3-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{bmatrix} = -\lambda + 6\lambda - 12\lambda + 8$$

$$= (-\lambda + 2)$$

The only eigenvalue is $\lambda = 2$ and it has multiplicity To find the corresponding eigenvectors

Solve Av = 0 after substituting N = 2 in A:

let $V = (v_1, v_2, v_3) \in \mathbb{R}^3$

$$\begin{bmatrix} -1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \longrightarrow \begin{cases} -v_1 - v_2 & 0 \longrightarrow v_1 = -v_2 \\ v_1 + v_2 + v_3 = 0 \end{cases}$$

The solution space is (t,-t,0) ER: t ER)

The normalized basis for this space is $V = \left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$S: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3} \quad S(x_{1}y_{1}, \frac{1}{2}) = (4x_{1}+y_{1}+3x_{1}+2y_{1}+7x_{2}-7y_{1}+5z_{2})$$

$$S = \begin{bmatrix} 4 & 1 & 0 \\ 3 & 2 & 0 \\ 7 & -7 & 5 \end{bmatrix}. \quad Set \quad A:_{7}S_{-}AI$$

$$det A = det \quad \begin{bmatrix} 4-\lambda & 1 & 0 \\ 3 & 2-\lambda & 0 \\ 7 & -7 & 5-\lambda \end{bmatrix} = -\lambda + 11\lambda^{2} - 35\lambda + 25$$

$$The corresponding eigenvectors:$$

$$\lambda_{1} = 5 \quad \text{and} \quad \lambda_{2} = 1 \quad \text{are two eigenvalues.}$$

$$The corresponding eigenvectors:$$

$$\lambda_{1} = 5 \quad AV = 0 \rightarrow \begin{bmatrix} -1 & 1 & 0 \\ 3 & -3 & 0 \\ 7 & -7 & 0 \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix} \leq \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{pmatrix} \begin{cases} 1 & 0 \\ \sqrt{2} & 1 & \sqrt{2} \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{cases}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{pmatrix} \begin{cases} 1 & 0 & 0 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{cases}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{cases}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{cases}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{cases}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{cases}$$

$$V = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \end{cases}$$

$$V = \begin{pmatrix} 1 & 1 & 1 & 1 \\ \sqrt{2} & 1 & \sqrt{2} & 1 \\ \sqrt{2}$$

$$Y = \left((u_{11} - 3u_{1}), \frac{1}{4} (-7u_{1} + 7(-3u_{1})) \right) \in \mathbb{R}$$

$$u = \left(\frac{-1}{\sqrt{59}}, \frac{3}{\sqrt{59}}, \frac{7}{\sqrt{59}}\right)$$
 is an orthonormal

bossis for Y.

$$(\lambda_{11}v)$$
, $(\lambda_{11}w)$, $(\lambda_{21}u)$ are three eigenpairs of S-

Solution 4:
$$S: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$

 $S = \begin{bmatrix} 1 & \sqrt{3} & 1 \\ \sqrt{3} & 0 & 0 \\ 1 & 0 & 2 \end{bmatrix}$

ligen pairs of S: (to see how we find them check solution 2.

$$\lambda_1 = 3 \quad \longrightarrow \quad V_1 = \left(\sqrt{\frac{3}{7}}, \frac{1}{\sqrt{7}}, \sqrt{\frac{3}{7}}\right)$$

$$\frac{1}{2} = -\sqrt{2} \implies \gamma_{2} = \left(-\frac{2+\sqrt{2}}{\sqrt{2(8+5\sqrt{2})}}, \frac{\sqrt{3}+\sqrt{6}}{\sqrt{2(8+5\sqrt{2})}}, \frac{1}{\sqrt{2(8+5\sqrt{2})}}\right)$$

$$\lambda_{3} = \sqrt{2} \longrightarrow y = \left(\frac{-2 + \sqrt{2}}{\sqrt{2(8 - 5\sqrt{2})}}, \frac{\sqrt{3} - \sqrt{6}}{\sqrt{2(8 - 5\sqrt{2})}}, \frac{1}{\sqrt{2(8 - 5\sqrt{2})}}\right)$$

spectral deemposition gives:

$$S = Q D Q$$
 where $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -\sqrt{2} & 0 \\ 0 & 6 & 52 \end{bmatrix}$.

$$= Q \qquad \begin{bmatrix} 3 & 0 & 0 \\ 0 & -\sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$$

exp is our analytic function therefore,

D has 2=8 complex square roots and as a result S has 8 square roots.

Problem 6.

Form the extended natrix (Aib):

first we check that for which values of s,t, (A;b) has rank 4, because then we know that for those values there is no solutions. (here both now and column operators are allowed).

(This is my first try and not the shortest way:)

if S#7

we clearly have a

full-rank matrix. i.e.

we have hour hin-indep-rows

For the given SOLE to have solutions it should either have s=7 or t=4. We consider 3 assi

• Set S=7 and t=9. The RREF of (A:b) after the substitution for S and S is and S is an S in S in

- In this case system has no solution.

There have the system has the unique sol. X = A'b.

. Set S=7 and t = 4: The RREF of (Aib)

Therefore in this case the system has no solutions.

rank φ + nallity $\varphi = \dim \mathbb{R}^3 = 3$

canned by TapScanne

(10(b):
$$9: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$$

$$\begin{aligned}
&\{(v)=0 = \begin{bmatrix} 5 & 6 & 4 & 7 \\ 1 & 3 & 2 & 4 \\ 7 & 3 & 2 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\
&Ax=0 \qquad \begin{bmatrix} 1 & 0 & 0 & -1/3 \\ 0 & 0 & 1/3 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\
&\Rightarrow \begin{cases} x_{2} + \frac{2}{3} \times 3 + \frac{13}{9} \times 4 = 0 \\ x_{1} - \frac{1}{3} \times 4 = 0 \Rightarrow 3x_{1} = x_{4} \end{aligned}$$

Now take $x_{1} = t \in \mathbb{R}$ as free variable and $x_{2} = S \in \mathbb{R}$ as well. $(t \neq 0 \land S \neq 0)$

$$= 7 \quad \overrightarrow{X} = \begin{cases} t \\ \frac{3}{35 + 13t} \\ 3 + 2 \end{cases} = t \begin{pmatrix} 1 \\ 0 \\ 13/2 \\ 3 \end{pmatrix} + S \begin{pmatrix} 0 \\ 13/2 \\ 0 \end{pmatrix}$$

Since t, S are arbitrary $2t$ and $2s$ are as well.

$$= 7 \quad \overrightarrow{X} = t \begin{pmatrix} 2 \\ 0 \\ 13 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 13/2 \end{pmatrix} + S \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} = t \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + S \begin{pmatrix}$$

3. Since S: V-9V is defined by describing its action on an arbitrary basis {a', -, ad} we cannot write down the natrix representation of S immediately. Therefore, we have to use the very important fact that the principle invariants of a Tensor and Hence its characterist Polynomial are independent of matrix representation of the Tensor in question. The change of basis Transformation is a Similarity Transformation and we need to find a matrix Similar to matrix representation of S.

[S] = A CA

You were given a Hint that this metrix, C, is what we need and is the matrix rep. of a map $\varphi: \mathbb{R}^d \to \mathbb{R}^d$ in the canonical basis.

To find the change of Basis metrix Notice that We can write;

$$\Rightarrow Q_{\alpha e} = [a', a^2, \dots, a^d]$$

$$= [a', Sa', \dots, Sa^{d-1}]$$

this is the metrix A given in the Hints.

(A \iff Qae)

Law we need to show this change of basis

Now we need to show this charge of basis matrix is invertible. But, that is easy! -since {a', -, ad} is basis, we know a', -, ad are all linearly independent and Hence rank of A is full rank and therefore A is invertible.

Now all it has to be done is to find the characteris polynomial of C and before that

Show that
$$S \stackrel{?}{=} ACA^{-1} \Rightarrow SA = AC$$

with A

i) $SA = S[a], a^{2}, ..., ad]$

$$= [a^{2}, a^{3}, ..., ad]$$

$$= [a^{1}, a^{2}, ..., ad]$$
(by def of S)

ii) $AC = A\begin{bmatrix} 0 & 0 & -1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

$$= [a^{1}, a^{2}, ..., ad] \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$= [a^{2}, a^{3}, ..., ad] \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
And characteristic polynomial of C is found by using mathematical induction on dimension of matrix.

1) For
$$d=1$$
 are have the base case:

$$C = \begin{bmatrix} x_1 \end{bmatrix}.$$

$$\det(\omega 11 - C) = \begin{bmatrix} \omega - \alpha_1 \end{bmatrix} = \omega - \alpha_1$$
2) for $d=2$

$$C = \begin{bmatrix} 0 & \alpha_1 \\ 1 & \alpha_2 \end{bmatrix}$$

$$\det(\omega 1 - C) = \begin{bmatrix} \omega & \alpha_1 \\ 1 & \omega - \alpha_2 \end{bmatrix} = \omega(\omega - \alpha_2) - \alpha_1$$

$$= \omega^2 - \alpha_2 \omega - \alpha_1$$
3) for $d=3$

$$C = \begin{bmatrix} 0 & 0 & \alpha_1 \\ 1 & 0 & \alpha_2 \\ 0 & 1 & \alpha_3 \end{bmatrix}$$

$$\det(\omega 11 - C) = \begin{bmatrix} \omega & 0 & \alpha_1 \\ 1 & \omega & \alpha_2 \\ 0 & 1 & \omega - \alpha_3 \end{bmatrix} = \omega \begin{bmatrix} \omega & \alpha_2 \\ 1 & \omega - \alpha_3 \end{bmatrix} - \alpha_1 \begin{bmatrix} 1 & \omega \\ 0 & 1 \end{bmatrix}$$

$$= \omega. \left\{ \omega(\omega - \alpha_3) - \alpha_2 \right\} - \alpha_1$$

$$= \omega. \left\{ \omega(\omega - \alpha_3) - \alpha_2 \right\} - \alpha_1 = \omega^3 - \alpha_3 \omega^2 - \alpha_2 \omega - \alpha_1$$
Now you see the fattern and prove it for all $d > 1$.

Note: Here using det $(\omega 11 - C)$ instead of det $(C - \omega 11)$ makes no difference for the purpose of finding eigenvalues.
only difference is $(-1)^n$, i.e. a Sign!

$C = \begin{bmatrix} 0 & 0 & 0 & \cdots & d_1 \\ 1 & 0 & 0 & \cdots & d_2 \\ 0 & 1 & 0 & \cdots & d_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -d_d \end{bmatrix}$
to find characteristic polynomial form det ([C]-W[1])
$ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ 1 & -\omega & 0 & -\omega & d_{2} \\ 0 & 1 & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ \omega & -\omega^{2} & 0 & -\omega & d_{2} \\ 0 & 1 & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ \omega & -\omega^{2} & 0 & -\omega & d_{2} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ \omega & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ \omega & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ 0 & 0 & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ 0 & 0 & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ 0 & 0 & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ 0 & 0 & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ 0 & 0 & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $ $ \begin{vmatrix} -\omega & 0 & 0 & -\omega & d_{1} \\ 0 & 0 & 1 & -\omega^{2} & -\omega & d_{3} \end{vmatrix} $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
by doing the same Algorithem for (d-2) steps We reach the following

$$= (-\omega)(-\omega^{2})(-\omega^{3})...(-\omega^{d-2}) - \omega^{d-1}$$

$$R_{2} \cdot \omega R_{2}$$

$$= (-\omega)(-\omega^{2})...(-\omega^{d-2}) - \omega^{d-1}$$

$$= (-\omega)(-\omega^{2})...(-\omega^{d-2}) - \omega^{d-1}$$

$$= (-\omega)...(-\omega^{d-2}) - \omega^{d-1}$$

$$= (-\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} - \omega^{d} \right) - \omega^{d} \right]$$

$$= (-\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega)...(-\omega^{d-1}) \left[\left(\sum_{i=1}^{d} x_{i} \omega^{i-1} \right) - \omega^{d} \right]$$

$$= (\omega)...(-\omega)$$

5. S:
$$\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$$
;

 \mathbb{Q} is orthogonal $\frac{dt}{dt}$ $\mathbb{Q}\mathbb{Q}^{T} = \mathbb{Q}^{T}\mathbb{Q} = 1$

15 $I_{1}(S) = \operatorname{tr}(S)$ $I_{2}(S) = \frac{1}{2} \left[\operatorname{tr}^{2}(S) - \operatorname{tr}(S^{2}) \right]$
 $I_{3} = -\det S$ $\operatorname{this} \operatorname{tr}(ST) = \operatorname{tr}(TS)$
 $\Rightarrow i)$ $I_{1}(\mathbb{Q}S\mathbb{Q}^{T}) = \operatorname{tr}(\mathbb{Q}S\mathbb{Q}^{T}) \stackrel{!}{=} \operatorname{tr}(\mathbb{Q}^{T}\mathbb{Q}S) = \operatorname{tr}(S)$
 $ii)$ $I_{2}(\mathbb{Q}S\mathbb{Q}^{T}) = \frac{1}{2} \left[\operatorname{tr}^{2}(\mathbb{Q}S\mathbb{Q}^{T}) - \operatorname{tr}(\mathbb{Q}S\mathbb{Q}^{T})(\mathbb{Q}S\mathbb{Q}^{T}) \right]$
 $= \frac{1}{2} \left[\operatorname{tr}^{2}(S) - \operatorname{tr}(\mathbb{Q}S\mathbb{Q}^{T}) \right] = \frac{1}{2} \left[\operatorname{tr}^{2}(S) - \operatorname{tr}(S^{2}) \right]$
 $= \frac{1}{2} \left[\operatorname{tr}^{2}(S) - \operatorname{tr}(\mathbb{Q}S\mathbb{Q}^{T}) \right] = -\det (\mathbb{Q}^{T}\mathbb{Q}S) = -\det (S)$
 $= -\det (\mathbb{Q}S\mathbb{Q}^{T}) = -\det (\mathbb{Q}S\mathbb{Q}^{T}) = -\det (S)$
 $= -\det (\mathbb{Q}S\mathbb{Q}^{T}) = -\det (S)$

T: V->W
$$\begin{cases}
V = \text{Span}\left(\left\{\frac{1}{4}, \frac{2}{4}, \frac{2}{4}\right\}\right) \\
W = \text{Span}\left(\left\{\frac{1}{4}, \frac{2}{4}, \frac{2}{4}\right\}\right) \\
M_{T} = \begin{bmatrix} 0 & -1 & 2 \\ 3 & -4 & 5 \end{bmatrix} ; M_{T}' := M_{T}^{fg} = ?
\end{cases}$$

$$M_{T} = Q_{fg}' M_{T}^{fg} Q_{ff}'$$
Where $Q_{g}'g$ is matrix of charge-of-basis $g' \rightarrow g$.

Charge of basis for $f \rightarrow f'$ is given as
$$\begin{cases}
f'_{1} = f_{1} \\
 \frac{1}{2} = f_{1} + f_{2} \\
 \frac{1}{3} = f_{1} + f_{2} - f_{3}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$
And $Q_{g}'g = Q_{gg}' = \begin{bmatrix} 1 & 1 & 1 \\ 0 & -1 \end{bmatrix}$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} - g_{2}
\end{cases}$$

$$\begin{cases}
g'_{1} = g_{1} \\
 g'_{2} = g_{1} -$$