Preparatory Exercises for the Problem Sheet 1 SS2020 - Analysis 2 - University of Leipzig

Mahsa Sayyary Namin

First week

In all of the following problems we are working over the field of real numbers. (Note that the equation $x^2 + 1 = 0$ has no solution over \mathbb{R} , however, it has two solutions $\pm i$ over \mathbb{C})

Problem 1. Determine whether the following systems of equations have any solutions? If no, explain why, and if yes write all the solutions.

$$\begin{cases} 2x + y = 0, \\ y + x = 1, \\ 2x - y = 0. \end{cases}$$

$$\begin{cases} 2x_1 - 3x_2 - 7x_3 + 5x_4 + 2x_5 = -2, \\ x_1 - 2x_2 - 4x_3 + 3x_4 + x_5 = -2, \\ 2x_1 - 4x_2 + x_5 + 2x_4 = 3, \\ x_1 - 5x_2 - 7x_3 + 6x_4 + 2x_5 = -7 \end{cases}$$

Solution 1. The first system has no solution because adding up the first and the last equations result in

$$4x = 0 \Rightarrow x = 0$$

$$\Rightarrow y = 0$$
 (since $2x + y = 0$)

$$\Rightarrow 1 = 0$$
 (since $x + y = 0$)

r; corresponds to the inthe equation.

solve it, we can form the reduced row echelon form by doing row operations:

$$\begin{array}{c}
\chi_{1} & \chi_{2} & \chi_{3} & \chi_{4} & \zeta_{5} \\
\chi_{2} & 1 & -2 & -4 & 3 & 1 & -2 \\
\chi_{3} & \chi_{4} & 1 & -2 & -2 & -2 & -2 \\
\chi_{3} & \chi_{4} & 1 & -2 & -2 & -2 & -2 & -2 & -2 \\
\chi_{3} & \chi_{4} & 1 & -5 & -7 & 6 & 2 & -7 & -7 & -2 & -2 & -2 \\
\chi_{3} & \chi_{4} & 1 & -5 & -7 & 6 & 2 & -7 & -7 & -2 & -2 & -2 \\
\chi_{4} & \chi_{5} & \chi_{4} & \chi_{5} & \chi_{5} & \chi_{6} & \chi_{7} & \chi_{7}$$

The simplified version of the original system of equations is:

$$\begin{cases} x_1 - 2x_3 + x_4 = 1\\ x_2 + x_3 - x_4 = 2\\ x_5 = 1 \end{cases}$$

By setting $x_3 = \alpha$ and $x_4 = \beta$, the solution set is

$$\{(2\alpha - \beta + 1, -\alpha + \beta + 2, \alpha, \beta, 1) \in \mathbb{R}^5 : \alpha, \beta \in \mathbb{R})\}$$

Problem 2. Let $A = \begin{pmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$, $x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, and $b = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$. For which values of b the system Ax = b has a solution?

Solution 2. We start with simplifying the system as in the previous problem:

for $\{b \in \mathbb{R}^3 : b_1 + b_2 = 5b_3\}$, the system Ax = b has (at least) one solution.

> 1. _

Problem 3. Find the determinant of the following matrices:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad \qquad B = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \\ 2 & 4 & 8 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ -1 & 0 & 3 & \dots & n-1 & n \\ -1 & -2 & 0 & \dots & n-1 & n \\ \dots & \dots & \dots & \dots & \dots \\ -1 & -2 & -3 & \dots & -(n-1) & 0 \end{pmatrix}$$

Remark 1. Based on your questions in the class: Determinant is ONLY defined for square matrices.

Solution 3. The first equation shows how to find the determinant of a 2×2 matrix. The second one shows how to reduce the problem of finding a 3×3 determinant to the 2×2 case. The third equation reduces finding a 4×4 determinant to 3×3 determinants. Therefore you can see that following this pattern you can see how to find a $n \times n$ determinant by finding some number of 2×2 determinants.

$$\det A = \bigoplus 1 \times 4 \bigoplus 2 \times 3 = -2$$
here we
$$\det B = \bigoplus 1 \times \det \begin{pmatrix} 2 & 1 \\ 4 & 8 \end{pmatrix} \bigoplus 2 \times \det \begin{pmatrix} 3 & 1 \\ 2 & 8 \end{pmatrix} \bigoplus 3 \times \det \begin{pmatrix} 3 & 2 \\ 2 & 4 \end{pmatrix} = \cdots$$
herefore
expand with
respect to
 $\det C = \bigoplus 1 \times \begin{pmatrix} 2 & 3 & 4 \\ 3 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix} \bigoplus 0 \times \begin{pmatrix} 1 & 3 & 4 \\ 4 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix} \bigoplus 1 \times \begin{pmatrix} 1 & 2 & 4 \\ 4 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
he last row
he cause of the
 $\det B = \bigoplus 1 \times \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \\ 0 & 1 & 0 \end{pmatrix} = \cdots$

Note that:

- Determinant of a triangular matrix is the product of the elements on the diagonal,
- Row and column operations do not change the determinant.

By adding the first row of the matrix D to all the other rows you get the triangular matrix:

 $\begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ 0 & 2 & \star & \dots & \star & \star \\ 0 & 0 & 3 & \star & \star & \star \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 & n \end{pmatrix}$ the star elements are not important.

Therefore det $D = 1 \times 2 \times 3 \times \ldots n = n!$

Problem 4. Let A and B be two $n \times n$ matrices. If det A = 5 and det B = 7, compute det (A^2B^3A) .

Solution 4.

$$det(A^4B^3A) = det(A^5B^3)$$
$$= det(A^5) \times det(B^3)$$
$$= (det A)^5 \times (det B)^3$$
$$= 5^5 \times 7^3.$$

Note that:

- If A and B are two matrices such that AB and BA are both defined, then det $AB = \det BA$,
- If A and B are two matrices of size $n \times n$ then det $AB = \det A \times \det B$

Problem 5. Let $A = \begin{pmatrix} a & 0 & 0 \\ d & b & 0 \\ f & e & c \end{pmatrix}$ such that a, b, and c are nonzero, compute A^{-1} .

Remark 2. Based on your questions in the class: Inverse is ONLY defined for square matrices with nonzero determinant.

Solution 5. In this problem we show that the inverse of a lower triangular 3×3 matrix (if exists) is lower triangular and the entries on the diagonal of A^{-1} are the inverse of the corresponding entries on the diagonal of A. Moreover you can see a general method to find the inverse of a matrix.

Since none of a, b, or c are zero, det $A = abc \neq 0$ and the inverse A^{-1} exists. We attach an identity matrix of the proper size to A and make the reduced row echelon form of A that is going to be the identity matrix. The identity matrix that we attached at the beginning will turn to A^{-1} by this

process.

Therefore
$$A^{-1} = \begin{pmatrix} \frac{1}{a} & 0 & 0\\ \frac{-d}{ab} & \frac{1}{b} & 0\\ \frac{-f}{ac} + \frac{de}{abc} & \frac{-e}{bc} & \frac{1}{c} \end{pmatrix}$$
.

Problem 6. Let A be the matrix from the previous problem. Does the system Ax = b have a solution? Is the solution unique?

Solution 6. Yes, it has a solution and it is unique. Let $v = A^{-1}b$ then $A(A^{-1}b) = b$. Thus v is a solution. Now let w be a solution. We have Aw = b. Multiplying both sides by A^{-1} gives $w = A^{-1}b = v$. Therefore the solution is unique.

Remark 3. If the matrix A is invertible then the system Ax = b has a unique solution. If the matrix A is not invertible the system can either have no solution or infinity many solutions. We have discussed both cases in the class.

Problem 7. For which values of α and β , the vectors $v_1 = (\alpha, 1)$ and $v_2 = (0, \beta)$ form a basis for \mathbb{R}^2 . In other words, v_1 and v_2 are linearly independent.

Solution 7. Two vectors v_1 and v_2 forming a basis for \mathbb{R}^2 is equivalent to $det \begin{pmatrix} \alpha & 1 \\ 0 & \beta \end{pmatrix} \neq 0$. Therefore, we need $\alpha \neq 0$ and $\beta \neq 0$.

Problem 8. Use the alternating symbol (Levi-Civita symbol) ϵ_{ijk} and the Kronecker delta δ_{ij} to show

$$u.(v \times w) = v.(w \times u) = w.(u \times v).$$

Solution 8. To be discussed in our next meeting.