Mathematical Physics

Series 8

1. Let \mathcal{T} be the system of open subsets of \mathbb{R}^N und s > 0. Let $\tau_s \colon \mathcal{T} \to [0, \infty]$ be the function

$$\tau_s(U) = (\operatorname{diam}(U))^s$$

Let $\mathcal{T}_{\varepsilon} = \{ T \in \mathcal{T} \mid \operatorname{diam} T < \varepsilon \}$ and consider the outer measure defined by

$$\mu_{\varepsilon,s}^*(A) := \inf \left\{ \sum_{n=1}^{\infty} \tau_s(U_n) \,|\, (U_n) \subset \mathcal{T}_{\varepsilon}, A \subset \bigcup_{n=1}^{\infty} U_n \right\}.$$

- **a)** Show: $\mu_{\varepsilon',s}^*(E) \ge \mu_{\varepsilon,s}^*(E)$ for $0 < \varepsilon' < \varepsilon$, $E \subset \mathbb{R}^N$, and deduce that $\mu_{(s)}^*(E) := \lim_{\varepsilon \to 0} \mu_{\varepsilon,s}^*(E)$ is well-defined f.a. $E \subset \mathbb{R}^N$.
- **b)** Show: $\mu_{(s)}^*$ ist an outer measure on \mathbb{R}^N .
- c) Show: For all $T \in \mathcal{T}$, we have

$$\mu_{(s)}^*(T) = \begin{cases} 0, & \text{if } s > N, \\ \infty, & \text{if } s < N. \end{cases}$$

(3 pts)

optional pts)

(2 pts)

d) Let
$$E \subset \mathbb{R}^n$$
 with $\mu_{(s)}^*(E) < \infty$ and $t > s$. Show: $\mu_{(t)}^*(E) = 0$. (3)

Given $E \subset \mathbb{R}^N$ we call

$$\dim_{HD} E = \sup\{s > 0 \,|\, \mu^*_{(s)}(E) = \infty\}$$

the Hausdorff-dimension of E, where $\dim_{HD} E := 0$ if $\mu^*_{(s)}(E) = 0$ f.a. s > 0.

Hence, $\dim_{HD} \mathbb{R}^N = N$.

- **2.** Consider the Cantor-set $C = \{\sum_{n=1}^{\infty} \frac{a_n}{3^n} | a_n \in \{0, 2\}$ f.a. $n \in \mathbb{N} \}$.
 - **a)** Show that C is in the Borel- σ -algebra of \mathbb{R} . *Hint: Write C as the intersection of compact subsets* $C_1 \supset C_2 \supset \ldots$ *l pt*
 - **b**) Show explicitly that the 1-dimensional Lebesgue measure $\lambda^1(C)$ of C is 0. (Do not use problem 1 above.) 1 pt
 - c) Show that for $s = \log 2/\log 3$ we have for the outer Hausdorff measure $\mu_{(s)}^*$ from Problem 1 that

$$\mu^*_{(s)}(C) \le 1$$

2 pts

- d) Show that $\mu_{(s)}^*(C) \ge \frac{1}{2}$ and deduce from Problem 1 that $\dim_{HD}(C) = \log 2/\log 3$. 2 optional points
- **3.** Decide whether the function $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{\sin x}{x}$ for $x \neq 0$ is Lebesgue-integrable or not and prove your answer. 4 pts
- a) Consider the following sequences of functions f_n: ℝ → ℝ and decide and prove whether lim_{n→∞} ∫_ℝ f_ndλ¹ exists and whether ∫_ℝ lim f_ndλ¹ = lim ∫_ℝ f_ndλ¹:
 - $\frac{1}{(1+x^2)^n}$ • $f_n(x) = \begin{cases} 0, & x \le n - \frac{1}{n}, \\ nx + 1 - n^2, & n - \frac{1}{n} \le x \le n, \\ 1 + n^2 - nx, & n \le x \le n + \frac{1}{n}, \\ 0, & x \ge n + \frac{1}{n}, \end{cases}$

2 points

b) Decide for $(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_{count})$ (μ_{count} is the counting measure) and for $([0, 1], \mathcal{B}([0, 1]), \lambda^1)$, for which $r, s \in [1, \infty)$ we have $L^r(X, \mu) \subset L^s(X, \mu)$.

Merry Christmas and Happy New Year !

Hand-In: Practice Session Wednesday Jan 8