Problem Sheet 11

Due Date: 25.05.2020, 12:00 UTC+2 (CEST)
Problem 1. $[\mathbf{2}+\mathbf{2}$ pts $]$ For the following linear mappings φ find basis and dimension of $\operatorname{ker} \varphi$ and $\operatorname{im} \varphi$

- $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}, \quad \varphi(x, y, z)=(4 x+3 y+5 z, x+2 y+z, 2 x-y+3 z, 6 x+7 y+7 z)$
- $\varphi: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$,
$\varphi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(5 x_{1}+6 x_{2}+4 x_{3}+7 x_{4}, x_{1}+3 x_{2}+2 x_{3}+4 x_{4}, 7 x_{1}+3 x_{2}+2 x_{3}+2 x_{4}\right)$
Problem 2. $[\mathbf{2}+\mathbf{2} \mathrm{pts}]$ Find eigenpairs of the following tensors
- $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad S(x, y, z)=(x-y, x+3 y+z, 2 z)$
- $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \quad S(x, y, z)=(4 x+y, 3 x+2 y, 7 x-7 y+5 z)$

Problem 3. [3 pts] Let $\left\{a^{1}, \ldots a^{d}\right\}$ be a basis of a linear space V. Consider the tensor $S: V \rightarrow V$ such that

$$
S a^{i}=a^{i+1} \quad \text { for } i=1, \ldots d-1, \quad S a^{d}=\alpha_{i} a^{i} \quad \text { for certain } \alpha_{i} \in \mathbb{R}, i=1, \ldots d
$$

what is the characteristic polynomial of S ?
Problem 4. [4 pts] Consider a tensor $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ represented in the standard basis by the following matrix

$$
\left[\begin{array}{ccc}
1 & \sqrt{3} & 1 \\
\sqrt{3} & 0 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Compute $S^{101}, \exp (S)$. How many square roots has S ?
Problem 5. [3 pts] Show that the principal invariants I_{k} of $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfy for any orthogonal tensor Q

$$
I_{k}\left(Q S Q^{T}\right)=I_{k}(S)
$$

(remark: that is why they are called 'invariants')
Problem 6. [4 pts] Consider SOLE

$$
\left\{\begin{align*}
3 x_{1}+x_{2}+3 x_{3} & =2 \tag{1}\\
4 x_{1}+4 x_{2}+7 x_{3} & =t \\
s x_{2}+5 x_{1}+11 x_{3} & =0 \\
2 x_{1}-2 x_{2}-x_{3} & =0
\end{align*}\right.
$$

Find values of the parameters $s, t \in \mathbb{R}$ such that the SOLE has: (i) none, (ii) one, (iii) many solutions.
Problem 7. [3 pts] Let $T: V \rightarrow W$ be a tensor such that its matrix in the bases f^{1}, f^{2}, f^{3} of V and g^{1}, g^{2} of W is

$$
\left[\begin{array}{lll}
0 & -1 & 2 \\
3 & -4 & 5
\end{array}\right]
$$

Find the matrix representation of T in the bases: $f^{1}, f^{1}+f^{2}, f^{1}+f^{2}-f^{3}$ of V and $g^{1}, g^{1}-g^{2}$ of W.

