5.5 SOLUTION

MAHSA SAYYARY
MATHEMATICAL PHYSICS WS 2019/20

Remark 1 It is important to understand the one to one correspondence between \mathbb{R}-multilinear maps $T: \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{\mathrm{m} \text { times }} \times\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}$ and $t: \underbrace{\mathbb{R}^{n} \times \cdots \times \mathbb{R}^{n}}_{\mathrm{m} \text { times }} \rightarrow \mathbb{R}^{n}$.

For that first try to see why $\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n} \cong \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. Let $t \in \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$, $f \in\left(\mathbb{R}^{n}\right)^{*}$, and $a \in \mathbb{R}^{n}$, now define $T: \mathbb{R}^{n} \times\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}$ to be $T(a, f)=(f \circ t)(a)$. Observe that $T \in\left(\mathbb{R}^{n}\right)^{*} \otimes \mathbb{R}^{n}$ and this correspondence is one to one.

Before we start with the solution we need to check some notations: For two derivations $X, Y \in \mathcal{X}(M)$ and $f, g \in C^{\infty}(M)$, by $X Y$ we mean the composition of two maps, thus $X Y(f)=X(Y(f))$ and by $f X$ we mean the product, i.e., $f X(g)=$ $f . X(g)$. To practice let us see what $[f X, g Y]$ is: (By definition $[X, Y]=X Y-Y X$)

$$
\begin{aligned}
{[f X, g Y](h) } & =((f X)(g Y))(h)-((g Y)(f X))(h) \\
& =f X(g Y(h))-g Y(f X(h)) \\
& =f \cdot X(g \cdot Y(h))-g \cdot Y(f \cdot X(h)) \\
& =f(g \cdot X(Y(h))+Y(h) \cdot X(g))-g(f \cdot(Y(X(h)))+X(h) \cdot Y(f)) \\
& =f g(X Y(h)-Y X(h))+f X(g) Y(h)-g Y(f) X(h)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
[f X, g Y]=f g(X Y-Y X)+f X(g) Y-g Y(f) X \in \mathcal{X}(M) \tag{1}
\end{equation*}
$$

Definition 1 As defined in problem 4.c of sheet 2, a connection $\nabla: \mathcal{X}(M) \times$ $\mathcal{X}(M) \rightarrow \mathcal{X}(M), \nabla(X, Y)=\nabla_{X} Y$ is a k-multilinear map of k-vector spaces for $k=\mathbb{C}$ and \mathbb{R}, such that

$$
\begin{align*}
\nabla_{f X} Y & =f \nabla_{X} Y \tag{2}\\
\nabla_{X}(f Y) & =f \nabla_{X} Y+X(f) Y \tag{3}
\end{align*}
$$

for all $X, Y \in \mathcal{X}(M)$ and $f \in C^{\infty}(M)$. (Check my solution 4 sheet 2 for the k-vector space structure of $\mathcal{X}(M))$

Note: Combining (2) and (3) we have:

$$
\begin{equation*}
\nabla_{f X}(g Y)=f g \nabla_{X} Y+f X(g) Y \tag{4}
\end{equation*}
$$

for all $X, Y \in \mathcal{X}(M)$ and $f, g \in C^{\infty}(M)$.

Now I suggest that before you read the following solution, make sure that you understand 4.c from sheet 2 .

Solution 5. To show that $R: \mathcal{X}(M) \times \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{X}(M)$ is a 3-1-tensor field, we need to show that for any $p \in M$, the map $R(X, Y, Z)_{(p)}:=$ $R_{p}(X(p), Y(p), Z(p))$ is well defined and k-multilinear. R_{p} being well-defined means that for all $X, Y, Z, X^{\prime}, Y^{\prime}, Z^{\prime} \in \mathcal{X}(M)$ such that $X(p)=X^{\prime}(p), Y(p)=Y^{\prime}(p)$, and $Z(p)=Z^{\prime}(p)$ we have $R_{p}(X(p), Y(p), Z(p))=R_{p}\left(X^{\prime}(p), Y^{\prime}(p), Z^{\prime}(p)\right)$. But from 4.c sheet 2 we know that this is enough to show that the map R is k-multilinear and for all $f, g, h \in \mathcal{X}(M)$ we have:

$$
\begin{equation*}
R(f X, g Y, h Z)=f g h R(X, Y, Z) \tag{5}
\end{equation*}
$$

By the definition of R :

$$
\begin{equation*}
R(X, Y, Z):=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{6}
\end{equation*}
$$

k-multilinearity of ∇ implies k-multilinearity of R. So it only remains to prove 5 .

$$
R(f X, g Y, h Z) \stackrel{\text { def }}{=} \nabla_{f X} \nabla_{g Y}(h Z)-\nabla_{g Y} \nabla_{f X}(h Z)-\nabla_{[f X, g Y]}(h Z)
$$

Now we can separately expand them:

$$
\begin{aligned}
\nabla_{f X} \nabla_{g Y}(h Z) & \stackrel{(4)}{=} f \nabla_{X}\left(g h \nabla_{Y} Z+g Y(h) Z\right) \\
& \stackrel{k-\text { lin. }}{=} f\left(\nabla_{X}\left(g h \nabla_{Y} Z\right)+\nabla_{X}(g Y(h) Z)\right) \\
& \stackrel{(4)}{=} f\left(g h \nabla_{X}\left(\nabla_{Y} Z\right)+X(g h) \nabla_{Y} Z+g Y(h) \nabla_{X} Z+X(g Y(h)) Z\right)
\end{aligned}
$$

You can simply switch $f \leftrightarrow g$ and $X \leftrightarrow Y$ to see:

$$
\nabla_{g Y} \nabla_{f X}(h Z)=g\left(f h \nabla_{Y}\left(\nabla_{X} Z\right)+Y(f h) \nabla_{X} Z+f X(h) \nabla_{Y} Z+Y(f X(h)) Z\right)
$$

Finally by using (1) and k-multilinearity of ∇ :

$$
\begin{aligned}
\nabla_{[f X, g Y]}(h Z)= & \nabla_{f g X Y}(h Z)-\nabla_{f g Y X}(h Z)+\nabla_{f X(g) Y}(h Z)-\nabla_{g Y(f) X}(h Z) \\
\stackrel{(4)}{=} & \left(f g h \nabla_{X Y} Z+f g(X Y(h)) Z\right)-\left(f g h \nabla_{Y X} Z+f g(Y X(h)) Z\right)+ \\
& \left(f X(g) h \nabla_{Y} Z+f X(g) Y(h) Z\right)-\left(g Y(f) h \nabla_{X} Z+g Y(f) X(h) Z\right)
\end{aligned}
$$

We can now add them up:

$$
\begin{aligned}
& \left(f g h \nabla_{X}\left(\nabla_{Y} Z\right)+f X(g h) \nabla_{Y} Z+f g Y(h) \nabla_{X} Z+f X(g Y(h)) Z\right)- \\
& \left(f g h \nabla_{Y}\left(\nabla_{X} Z\right)+g Y(f h) \nabla_{X} Z+f g X(h) \nabla_{Y} Z+g Y(f X(h)) Z\right)- \\
& \left(f g h \nabla_{X Y} Z+f g(X Y(h)) Z-f g h \nabla_{Y X} Z-f g(Y X(h)) Z+\right. \\
& \left.f X(g) h \nabla_{Y} Z+f X(g) Y(h) Z-g Y(f) h \nabla_{X} Z-g Y(f) X(h) Z\right)
\end{aligned}
$$

By simply reordering it you get 5 :

$$
\begin{aligned}
R(f X, g Y, h Z) & =f g h\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{X Y} Z+\nabla_{Y X} Z\right)+ \\
& (f X(g h)-f g X(h)-f X(g) h) \nabla_{Y} Z- \\
& (g Y(f h)-f g Y(h)-g Y(f) h) \nabla_{X} Z+ \\
& (f X(g Y(h))-f g X(Y(h))-f X(g) Y(h)) Z- \\
& (g Y(f X(h))-f g Y(X(h))-g Y(f) X(h)) Z
\end{aligned}
$$

By the definition of a derivation you see that the expression in big parenthesis at each line vanishes. Therefore

$$
R(f X, g Y, h Z)=f g h\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z\right)
$$

