Analysis-2 Jan Burczak

Problem Sheet 14

Due Date: 13.07.2020, 12:00 UTC+2 (CEST)
Problem 1. [3 pts] Compute the differential and the Jacobian determinant of

$$
f(r, \theta, \phi)=(r \sin \theta \cos \phi, r \sin \theta \sin \phi, r \cos \theta), \quad \text { for } r>0,0 \leq \theta<\pi, 0 \leq \phi<2 \pi
$$

Problem 2. $[\mathbf{2} \mathrm{pts}]$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be diffetentiable. Find the differential of

$$
g(x, y, z):=f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)
$$

Problem 3. [3 pts]
Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
f(x, y)=\left(2 x y, e^{x}+y\right)
$$

Show that f is invertible in a neighbourhood of $(1,1)$.
Problem 4. [3 pts] Consider $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ given by $f(x)=x|x|$. Discuss its differentiability.

Problem 5. [3 pts] Consider a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$. Show that

$$
|f(x)|=1 \Longrightarrow f \cdot \nabla f=0
$$

