Review, Hints and Preparatory exercises For HW 15.

Problem 1.

Review: Directional derivative of $f: U \rightarrow \mathbb{R}^n$ $U \subseteq \mathbb{R}^k$ at a point x_o in the direction v is

 $\lim_{t\to\infty} \frac{f(x_0+tv)-f(x_0)}{t} = \nabla f(x_0)v$

So all you need is compute $\nabla f(x_0)$ which you know how from HW14. Then, you have a $n \times k$ matrix $\nabla f(x_0)$ and you multiply if by the given vector v.

Ex1; find the directional derivative of the

function $f: U \rightarrow R$, $U \subseteq IR$, defined by $f(x,y) = \left(\frac{f_1}{(c_1 x - L_{ny})}, \frac{f_2}{y}, \frac{f_3}{xy}\right)$

at the point $(\pi,1)$ in the direction (-2,3).

Solution:

$$\nabla f = \begin{bmatrix} -\sin x & -\frac{1}{y} \\ \ln y \cdot y & \frac{\pi}{xy} \\ y \in \begin{bmatrix} -\sin x & -\frac{1}{y} \\ -\sin x & \frac{\pi}{xy} \end{bmatrix}$$

$$\nabla f(\pi_{1}) \cdot \gamma = \begin{bmatrix} 0 & -1 \\ 0 & \pi \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} -3 \\ 3\pi \\ e^{\pi}(-2+3\pi) \end{bmatrix}$$

Ex2. Let f (x11x2)= V1x1-x2/1 (x11x2) ER. Determine all directions leR2 along which If (0,0) exists. Solution: $\lim_{t\to 0} \frac{f((0,0)+tl)-f(0,0)}{t}$ = $\lim_{t\to 0} \frac{f(tl_1, tl_2) - 0}{t} = \lim_{t\to 0} \frac{\sqrt{(tl_1)^2 - (tl_2)^2}}{t}$ = lin |t| /|l,2-l21|
t-0 To have the limit, we need to have lim -- = lim- $\Rightarrow \sqrt{|l_1^2 - l_2^2|} = -\sqrt{|l_1^2 - l_2^2|} \Rightarrow |l_1^2 - l_2^2| = 0$ => l= = + l2 for $l = (\alpha_1 - \alpha) \in \mathbb{R}^2$ s.t. $a \in \mathbb{R}$ the directional derivative at (0,0) exists.

Problem 2.

Review. Are length parametrization is a parametrization of a curve $\gamma: I \longrightarrow IR^d$ such that |X'|=1.

For a curve with Anc length parametrization the

Frenet frame or TNB frame are:

 $T:=\gamma'$ $n:=\frac{\gamma''}{|\gamma''|}$ $b:=\tau \times n$

Therefore, first you need to find a arc-length parametrization of the given corve and then compute z, n, b.

Ex 3. find an arc-length parametrisation of the curve $X: [o, \pi] \rightarrow \mathbb{R}^4$ S(t) = (sint, sin 2t, Gst, Gs 2t)

8(t) = (Cest, 2 con 2t, - Sint, -2 Sin 2t)

 $|y'(t)| = \sqrt{(\omega_1 t)^2 + 4(\omega_1 2t)^2 + (\sin t)^2 + 4(\sin 2t)^2} = \sqrt{5}$

let $t = \frac{\alpha}{\sqrt{5}}$ $\alpha \in [0, \sqrt{5\pi}]$

W 8: [0, 55 m] - R

 $\tilde{g}(z) = \left(\sin\frac{z}{\sqrt{5}}, \sin\left(\frac{z^{\alpha}}{\sqrt{5}}\right), \cos\frac{z}{\sqrt{5}}, \cos\left(\frac{z^{\alpha}}{\sqrt{5}}\right)\right)$

This is the same curve and

8(x) = (\frac{1}{\sqrt{5}} as \frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}} (\frac{2}{\sqrt{5}}), \frac{1}{\sqrt{5}} \sin \frac{1}{\sqrt{5}} \sin \frac{2}{\sqrt{5}})

18(4)] . /

Problem 3. Then 4.15. let F: G - R, GCR "+", F is of class C. i.e. differentiable with continuous differential. and rank of $\nabla f(z)=n$ YZEG. Then M:= { Z & G | f(Z) 50 } a differentiable manifold and tzem

TZM = Sh ER M+n VF(Z)h =0 } and

Nz M = lin { DF, (Z), ..., DF, (Z) }.

Ex 4. Find a tangent plane to the graph of the function $f(x_iy) = x + y^2$, $(x_iy) \in \mathbb{R}^2$ through the point (1,-1,2). Find the normal line as well.

Solution. $F(x_1y_1z) = x + y^2 - z$ $M = \begin{cases} p \in \mathbb{R}^3 & \text{s.t.} & F(p) = 0 \end{cases}$ $\nabla F(p_0) = \begin{cases} \frac{\partial F}{\partial x}(p_0) & \frac{\partial F}{\partial y}(p_0) & \frac{\partial F}{\partial z}(p_0) \end{cases}$ $= \begin{bmatrix} 1 & -2 & -1 \end{bmatrix}$ $T_p M = \begin{cases} h \in \mathbb{R}^3 : [1 - 2 - 1] \begin{cases} h_1 \\ h_2 \\ h_3 \end{cases} \end{cases} = 0$ $\Rightarrow T_p M \text{ is the colution of } h_1 - 2h_2 - h_3 = 0$

This is a plane in \mathbb{R}^3 . (This is a subspace of dim 2.)

 $N_p M = (1-2 i).t \rightarrow This is a line in <math>R^3.$) + GIR

Problem 4.
Review. Hessian: let g: U→R, U⊆R, , xo ∈ U
then $Hg(x_0) = \left[\frac{3g}{3x_0} \frac{g}{3x_0}\right] k_j$ $1 \leq k_1 \leq n$
By Schwarz Theorem (4.16) we know that
Hg (x _o) is symmetric since $\frac{\partial^2}{\partial x_k} = \frac{\partial^2}{\partial x_k} = $
¥ L ₁ j ∈ {1,, n}
A symmetric matrix is positive definite if
the determinant of all the minors of the
Form (i.e. the kxk motrices
on the top-left Corner for k=1,, n) are positive
It is negative definite if the sign afternates

Thun 4.17. g:U-R, x, EU,

;f

-g is differentiable on U

- It's pantial derivatives are differentiable at x

- grad g(x) = 0 (grad g = Vg when g: U - R)

Then

· Hg (a) positive definite => gm) is a local min.

o v negative v => ~ ~ ~ ~ max.

Ex 5. Find a local extrema of

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x_iy) \mapsto \chi^2 + y^2$$

and $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$ $(\pi,y) \longrightarrow \chi^2 - y^2$ Solubions

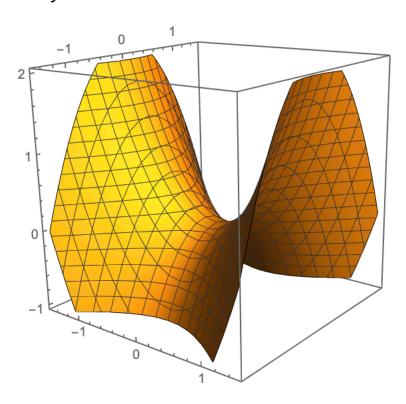
Both & and g are differentiable everywhere and their partial derivatives are differentiable everywhere.

grad
$$f = \begin{bmatrix} 2x & 2y \end{bmatrix} = 0 \Rightarrow x = y = 0$$

Hf $(0,0)$ = $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$

2>0 4>0

-> Hf is positive definite = \$(0,0) is a local minimum.


grad
$$g = [2x - 2y] = 0 = 0$$
 $x = y = 0$
 $y = (0,0) = [2x - 2y] = 0$ This is not positive or negative definite:

g(0,0) is not a local extrema.

 $f = z - x^2 - y^2$ k = 1.5; $ContourPlot3D[f == 0, \{x, -k, k\}, \{y, -k, k\}, \{z, -k+1/2, k+1/2\}]$ $-x^2 - y^2 + z$

 $f = z - x^2 + y^2$ k = 1.5; $ContourPlot3D[f == 0, \{x, -k, k\}, \{y, -k, k\}, \{z, -k+1/2, k+1/2\}]$ $-x^2 + y^2 + z$

Problem 5. we use implicit function theorem. $F: G \longrightarrow \mathbb{R}$ $G \subseteq \mathbb{R}^{m_{+}n}$. F of class clon G. . x ∈ R , y ∈ R, (x,y) ∈ G, F(x,y) = 0 · det Df(2017) + 0 * The coordinates of x are independent around the point (2017) # The Coordinates of around the point (2,1%) Dyf is part of the matrix Vf that only the partial derivatives unt coordinates This is a nxn Submatrix of the nx (m+n) matrix Vf.

Although Implicit function than does not give us the explicit formela for f, we can still compute its differential. (page 70)

Vf (x) = - (DyF(noisy)) Dyf (xoisy)

Remember that this are is a square matrix.

* You can always reorder the variables and move the dependent variables to the end.

Ex6. Let G:R=># st.

G(ny) = 2 - 324+y3-7

Is there a function $f: U \rightarrow \mathbb{R}, 3 \in U \subseteq \mathbb{R}$ st. f(3) = 4 and $\forall \alpha \in U \in G(f(\alpha), \alpha) = 0$?

If yes, find the differential of f at 3.

Solution:

First observe that G(413) =0

 $\frac{\partial G}{\partial x}(4,3) = 2x - 3y = -1 \neq 0$

 $\frac{26}{39}$ (4,3) = -3x +3y² | = 15 $\neq 0$ Gnot needed

There hore, you can choose any of a or y to be

the dependent. We choose x since the question

is asking for it.

Thus, there is a function
$$f: U \rightarrow \mathbb{R}$$
 $U \subseteq \mathbb{R}$
s.t. $f(3) = \P$ and $\forall x \in U$
 $G(f(x), x) = 0$
and $\partial f(3) = -(DG(4;3))(DG(4;3))$
 $= -(-1)^{-1}(15) = \overline{15}$