Series 5

1. Use spherical coordinates

$$
(x, y, z)=(r \sin \vartheta \cos \varphi, r \sin \vartheta \sin \varphi, r \cos \vartheta), \quad \vartheta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \varphi \in[0,2 \pi]
$$

on \mathbb{R}^{3}.
a) Express the differential forms

$$
\begin{aligned}
\alpha & =x d x+y d y+z d z \\
\beta & =x d y \wedge d z-y d x \wedge d z+z d x \wedge d y \\
\gamma & =\operatorname{vol}:=d x \wedge d y \wedge d z
\end{aligned}
$$

in spherical coordinates and $d r, d \vartheta, d \varphi$ in cartesian coordinates.
3 pts.
b) Find a 2 -form $0 \neq \omega \in \Omega^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ such that $d \omega=0$ but there exists no $\eta \in \Omega^{1}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ with $d \eta=\omega$. Compute $\int_{S^{2}\left(r_{o}\right)} \omega$, where $S_{r_{o}}^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=r_{o}^{2}\right\}, r_{o}>0$.
Hint: Use Ansatz $\omega=i_{X}$ vol for a vector field $X=f(r) \frac{\partial}{\partial r}, f \in C^{\infty}\left(\mathbb{R}^{3} \backslash\{0\}, \mathbb{R}\right)$. 3 pts.
2. Consider the 2-dimensional manifold

$$
T_{r, R}=\left\{(x, y, z) \mid\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}\right\}
$$

for $0<r<R$.
a) Why is $T_{r, R}$ a smooth manifold?
$1 p t$
b) Find two 1 -forms $\alpha, \beta \in \Omega^{1}\left(T_{r, R}\right)$ s.t. $d \alpha=d \beta=0$ but there ex. no $f, g \in C^{\infty}\left(T_{r, R}\right)$ with $d f=\alpha, d g=\beta$, and such that $\alpha \wedge \beta$ vanishes nowhere on $T_{r, R}$. 2 pts.
c) Compute $\int_{T_{r, R}} \alpha \wedge \beta$ for your solutions.

1 pt.
3. Let $\mathbb{R}^{2 n}=\mathbb{R}^{n} \times \mathbb{R}^{n}$ with the coordinates $\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{n}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ and with the 2-form $\omega_{o} \in \Omega^{2}\left(\mathbb{R}^{2 n}\right)$ given by

$$
\omega_{o}=d x^{1} \wedge d y^{1}+\ldots+d x^{n} \wedge d y^{n}
$$

a) Show that ω_{o} induces an isomorphism for any open subset $U \subset \mathbb{R}^{2 n}$

$$
\begin{aligned}
\mathcal{X}(U) & \cong \\
X & \mapsto i_{X} \omega_{o}(U),
\end{aligned}
$$

1 pt.
b) Given $H \in C^{\infty}(U, \mathbb{R})$ define $X_{H} \in \mathcal{X}(U)$ by $i_{X_{H}} \omega_{o}=d H$. Write the formula for the ordinary differential equations of the local flow of X_{H} in the (x, y)-coordinates.

1 pt.
c) Show that the formula

$$
X_{\{f, g\}}=\left[X_{f}, X_{g}\right]
$$

defines an \mathbb{R}-bilinear operation $\{\cdot, \cdot\}: C^{\infty}(U) \times C^{\infty}(U) \rightarrow C^{\infty}(U)$ uniquely up to a constant, and give an explicit expression for $\{f, g\}$ in the (x, y)-coordinates. 1 pt .
d) Let ϕ_{H}^{t} be the local flow of the vectorfield X_{H}. Show that $\frac{d}{d t}\left(H \circ \phi_{H}^{t}\right)=0 . \quad 1$ pt.
4. Let Q be an arbitrary smooth n-dimensional manifold and consider its cotangent bundle $T^{*} Q$. If $\left(q^{1}, \ldots, q^{n}\right)$ are local coordinates on Q, then the canonically associated coordinates on $T^{*} Q$ are $\left(q^{1}, \ldots, q^{n}, p_{1}, \ldots, p_{n}\right)$. Show that the formula $X=\sum_{i} p_{i} \frac{\partial}{\partial p_{i}}$ defines a globally well-defined vector field on $T^{*} Q$.
pts.
5. Optional Problem: Let M be a smooth manifold and $\nabla: \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{X}(M),(X, Y) \mapsto \nabla_{X} Y$ a connection. Then define the operator

$$
R: \mathcal{X}(M) \times \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \mathcal{X}(M)
$$

by

$$
R(X, Y, Z):=R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

Show that R is a 3-1-tensor field, i.e. it can be understood as a section of $\otimes^{3} T^{*} M \otimes T M$. 4 pts.

Hand-In: Practice Session Wednesday Nov. 20

