Problem Sheet 9
Due Date: 27.04.2020, 12:00 UTC+2 $(C E S T) \longrightarrow$ if you see a contradifion then it is NOT solvable.
Problem 1. [3 pts] Solve the following system of linear of equations.

1. fix the order
2. make the matrix

3-do the now operations $\left\{\begin{array}{c}2 x_{1}+5 x_{2}-2 x_{3}+13 x_{4}-13 x_{5}=11 \quad 5 \text { - solve it! } \\ x_{1}+3 x_{2}-x_{3}+5 x_{4}-4 x_{5}=5\end{array}\right.$

$$
\left\{\begin{align*}
& 3 x_{1}+9 x_{2}-2 x_{3}+17 x_{4}-13 x_{5}=16 \tag{1}\\
& 2 x_{1}+7 x_{2}+7 x_{4}-2 x_{5}=11 \\
& 2 x_{1}+5 x_{2}-2 x_{3}+13 x_{4}-13 x_{5}=11 \\
& x_{1}+3 x_{2}-x_{3}+5 x_{4}-4 x_{5}=5
\end{align*} \quad\right. \text { system solve it! }
$$ cutill it is RREF.

Problem 2. [3 pts] Which values of $r \in \mathbb{R}$ make the following system solvable? Find these solutions.
do 1,2 and $3 /$

$$
\left\{\begin{array}{r}
x_{1}+2 x_{2}+2 x_{3}+x_{4}=3 \\
3 x_{1}+8 x_{2}+8 x_{3}+7 x_{4}=9 \\
2 x_{1}+5 x_{2}+6 x_{3}+5 x_{4}=7 \\
r x_{4}+x_{1}+3 x_{2}+4 x_{3}=5 \text { values of } \text { The se se stem is solvable (2)dort } \\
\text { The which }
\end{array}\right.
$$

for those values.
Problem 3. $\left[\mathbf{2}+\mathbf{2 + 1 + 3 ^ { * }}\right.$ pts] Compute determinants of
i) $A=\left[\begin{array}{llll}3 & 4 & 2 & 2 \\ 4 & 5 & 6 & 5 \\ 2 & 3 & 6 & 0 \\ 8 & 7 & 7 & 8\end{array}\right] \xrightarrow[\text { sped do the row operations until you have the }]{2 \text { simple ways to compute the determinant: }}$ (RREF of the matrix. Now you have an upper
ii) $B=\left[\begin{array}{lllll}3 & 6 & 0 & 6 & 3 \\ 4 & 5 & 0 & 4 & 2 \\ 5 & 4 & 3 & 3 & 2 \\ 4 & 3 & 1 & 2 & 2 \\ 1 & 2 & 1 & 2 & 1\end{array}\right]$ of the diagonal s.

2- expand with respect to a row/column: (or simply, follow the pattern:)

$$
\begin{aligned}
& 2 \times 2 \text { matrix: } \operatorname{det}\left[\begin{array}{ll}
a & X_{d} \\
c^{a}
\end{array}\right]=a d-b c \\
& 3 \times 3 \text { matrix: } \\
& 2 \times 2 \text { matrix: } \operatorname{det}\left[\begin{array}{ll}
a & b \\
c_{d}
\end{array}\right]=a d-b c
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}\left(\mu_{1}\right) \cdot \operatorname{det}\left(\mu_{2}\right)
\end{aligned}
$$

* for which n-tuples $\left(s_{1}, s_{2}, \ldots, s_{n}\right) \in \mathbb{R}^{n}$ the equation $\operatorname{det} A=0$ where

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
1 & s_{1}-x & s_{1} & \cdots & \cdots & s_{1} \\
s_{1} \\
1 & 1 & s_{2}-x & \cdots & s_{2} & s_{2} \\
& & & \cdots & \cdots & - \\
1 & 1 & 1 & \cdots & 1 & n s_{n}-x
\end{array}\right]_{(n+1) \times(n+1)}
$$

has a unique solution $x=0$.
what does the problem mean? let's set $s_{i}=0$ for $\forall_{i} \in\{1, \ldots, n\}$ then we have

$$
A=\left[\begin{array}{ccccc}
1 & 1 & \ldots & -1 \\
1 & -x & 0 & \cdots & 0 \\
1 & 1 & -x & \cdots & 0 \\
& \cdots & \cdots & 0 \\
1 & 1 & \cdots-1 & -x
\end{array}\right]
$$

take $r_{i}=r_{i}-r_{1} \quad \forall_{i} \geqslant 2$.

$$
\operatorname{det} A=\operatorname{det}\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 \\
0 & -x-1 & 1 & \cdots & 1 \\
& -x-1 & \vdots \\
& \ddots & \vdots & 1 \\
& & & -x-1
\end{array}\right]=(-x-1)^{n} \rightarrow \text { so } \operatorname{det} A=0
$$

bat we want this solution to be $x=0$
If we do the. Same process without setting $s_{i}=0 \quad t_{i}$ we get

$$
\begin{aligned}
& \operatorname{det} A=\operatorname{det}\left|\begin{array}{cccc}
0 & s_{1}-1-x & s_{1}-1 & \cdots \\
s_{1}-1 \\
& s_{2}-1-x & \cdots & s_{2}-1 \\
& & & \vdots \\
& & & \vdots \\
& & & n s_{n}-1-x
\end{array}\right|= \\
& \left(\sqrt{5} \frac{0}{\left.s_{1}-1-x\right)} \frac{0}{\left(2 s_{2}-1\right.}-x\right) \cdots\left(\sqrt{\left(n s_{n}-1\right.}-x\right)=0 \\
& \Rightarrow\left(s_{1}, \ldots, s_{n}\right)=\left(1, \frac{1}{2}, \ldots, \frac{1}{n}\right) \in \mathbb{R}^{n}
\end{aligned}
$$

* prove that the determinant of a diagonal matrix (it exits) is diagonal. what is the relation between $D_{i i}$ and $D_{i i}^{-1}$.
we make the RREF of D : device the first vow by d_{11}. then you need to use 1 to make the rest of the first column zero. but the rent is already zero. So you mare to the Second row, the first nonzero element is d_{22}, deride everything by d_{22}. now the same story again....

If instead of D if was an Upper-triangalar U

do you see that these zeros never change?

Problem 5. $[\mathbf{2}+\mathbf{2}+\mathbf{2} \mathrm{pts}]$ Invert matrices how to invert a matrix $A_{n \times n}$:

$$
\left[\begin{array}{l:l}
A & I
\end{array}\right]_{n \times 2 n} \xrightarrow[\text { of } A]{\text { make RREF }}
$$

$$
A_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
2 & 0 & 0 & 1 \\
0 & 3 & 2 & 1
\end{array}\right] \text { has as in in problem just solve } A x=b
$$

$$
\left[\begin{array}{c}
\text { TREF } \\
\text { of } \\
A
\end{array}\right) \quad \begin{gathered}
\text { if this is } I_{\text {man }} \\
\text { then } B=A^{-1} \\
A_{2}
\end{gathered}=\left[\begin{array}{cccc}
1 & 3 & 1 & 1 \\
2 & -1 & -2 & 2 \\
-1 & -2 & 2 & -1 \\
3 & 1 & -1 & 2
\end{array}\right]
$$

for $\frac{b}{2}$ you can already use the RREF of A, do you see why? and solve (if possible) $A_{i} x=b_{i}, i=1,2$ with A_{i} above and $b_{1}=\left[\begin{array}{l}3 \\ 5 \\ 0 \\ 6\end{array}\right], b_{2}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Problem 6. [3 pts] What are the values of parameters $s, t \in \mathbb{R}$ such that

$$
c_{1}=(5,7, s, 2), c_{2}=(1,3,2,1), c_{3}=(2,2,4, t)
$$

of \mathbb{R}^{4} are linearly independent?
linear independency means that non of the vectors can be critter as a linear combination of the other two. In another words the RREF of the matrix $\left[\begin{array}{llll}5 & 7 & 5 & 2 \\ 1 & 3 & 2 & 1 \\ 2 & 2 & 4 & t\end{array}\right]<c_{1}$
so Just form the RREF and chede for which st no now is zero. (If you have heard of the "Rank", you can say the rank of the matrix has to be 3.)

The Gram-Schmidt process [edit]

We define the projection operator by

$$
\operatorname{proj}_{\mathbf{u}}(\mathbf{v})=\frac{\langle\mathbf{v}, \mathbf{u}\rangle}{\langle\mathbf{u}, \mathbf{u}\rangle} \mathbf{u}
$$

where $\langle\mathbf{u}, \mathbf{v}\rangle$ denotes the inner product of the vectors \mathbf{u} and \mathbf{v}.
This operator projects the vector \mathbf{v} orthogonally onto the line
spanned by vector \mathbf{u}. If $\mathbf{u}=\mathbf{0}$, we define $\operatorname{proj}_{0}(\mathbf{v}):=0$. i.e., the
projection map proj $_{0}$ is the zero map, sending every vector to the zero vector.
The Gram-Schmidt process then works as follows:

$$
V 3=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
$$

$$
\mathbf{u}_{1}=\mathbf{v}_{1}
$$

$$
\mathbf{e}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}
$$

$$
\mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right)
$$

$$
\mathbf{e}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}
$$

$$
\mathbf{u}_{3}=\mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{3}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{3}\right)
$$

$$
\mathbf{e}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}
$$

$$
\mathbf{u}_{4}=\mathbf{v}_{4}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{2}}\left(\mathbf{v}_{4}\right)-\operatorname{proj}_{\mathbf{u}_{3}}\left(\mathbf{v}_{4}\right)
$$

$$
\mathbf{e}_{4}=\frac{\mathbf{u}_{4}}{\left\|\mathbf{u}_{4}\right\|}
$$

$$
\vdots
$$

$$
\mathbf{u}_{k}=\mathbf{v}_{k}-\sum_{j=1}^{k-1} \operatorname{proj}_{\mathbf{u}_{j}}\left(\mathbf{v}_{k}\right)
$$

$$
\mathbf{e}_{k}=\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|}
$$

The sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ is the required system of orthogonal vectors, and the normalized vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ form an orthonormal set. The calculation of the sequence $\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}$ is known as Gram-Schmidt orthogonalization, while the calculation of the sequence $\mathbf{e}_{1}, \ldots, \mathbf{e}_{k}$ is known as Gram-Schmidt orthonormalization as the vectors are normalized.

Example [edit]

Euclidean space [edit]

Consider the following set of vectors in \mathbf{R}^{2} (with the conventional inner product)

$$
S=\left\{\mathbf{v}_{1}=\binom{3}{1}, \mathbf{v}_{2}=\binom{2}{2}\right\}
$$

Now, perform Gram-Schmidt, to obtain an orthogonal set of vectors:

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{v}_{1}=\binom{3}{1} \\
& \left.\mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}}\left(\mathbf{v}_{2}\right)=\binom{2}{2}-\operatorname{proj}_{\binom{3}{1}}\left(\binom{2}{2}\right)=\binom{2}{2}-\frac{\binom{\left.(3) \cdot\binom{1}{1} \cdot\binom{3}{1}\right\rangle}{ 1}=\binom{3}{1}=\frac{6+2}{9+1}(1}{6 / 5}\right) .
\end{aligned}
$$

We check that the vectors \mathbf{u}_{1} and \mathbf{u}_{2} are indeed orthogonal:

$$
\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}\right\rangle=\left\langle\binom{ 3}{1},\binom{-2 / 5}{6 / 5}\right\rangle=-\frac{6}{5}+\frac{6}{5}=0
$$

noting that if the dot product of two vectors is 0 then they are orthogonal.
For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above:

$$
\begin{aligned}
& \mathbf{e}_{1}=\frac{1}{\sqrt{10}}\binom{3}{1} \\
& \mathbf{e}_{2}=\frac{1}{\sqrt{\frac{40}{25}}}\binom{-2 / 5}{6 / 5}=\frac{1}{\sqrt{10}}\binom{-1}{3} .
\end{aligned}
$$

Preparatory Exercises for the Problem Sheet 1
 SS2020 - Analysis 2 - University of Leipzig

Mahsa Sayyary Namin

First week

In all of the following problems we are working over the field of real numbers. (Note that the equation $x^{2}+1=0$ has no solution over \mathbb{R}, however, it has two solutions $\pm i$ over \mathbb{C})

Problem 1. Determine whether the following systems of equations have any solutions? If no, explain why, and if yes write all the solutions.

$$
\begin{gathered}
\left\{\begin{array}{l}
2 x+y=0 \\
y+x=1, \\
2 x-y=0
\end{array}\right. \\
\left\{\begin{array}{l}
2 x_{1}-3 x_{2}-7 x_{3}+5 x_{4}+2 x_{5}=-2, \\
x_{1}-2 x_{2}-4 x_{3}+3 x_{4}+x_{5}=-2, \\
2 x_{1}-4 x_{2}+x_{5}+2 x_{4}=3, \\
x_{1}-5 x_{2}-7 x_{3}+6 x_{4}+2 x_{5}=-7
\end{array}\right.
\end{gathered}
$$

Solution 1. The first system has no solution because adding up the first and the last equations result in

$$
\begin{aligned}
4 x=0 & \Rightarrow x=0 & & \\
& \Rightarrow y=0 & & (\text { since } 2 x+y=0) \\
& \Rightarrow 1=0 & & (\text { since } x+y=0)
\end{aligned}
$$

solve it, we can form the reduced row echelon form by doing row operations:

$$
\begin{aligned}
& \begin{array}{lllll}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5}
\end{array} \\
& \begin{array}{l}
r_{1} \\
r_{2} \\
r_{3} \\
r_{4}
\end{array}\left(\begin{array}{ccccc|c}
2 & -3 & -7 & 5 & 2 & -2 \\
1 & -2 & -4 & 3 & 1 & -2 \\
2 & 0 & -4 & 2 & 1 & 3 \\
1 & -5 & -7 & 6 & 2 & -7
\end{array}\right) \xrightarrow{r_{1}} \longleftrightarrow r_{2} \begin{array}{c}
r_{2} \\
r_{1}
\end{array}\left(\begin{array}{ccccc|c}
1 & -2 & -4 & 3 & 1 & -2 \\
2 & -3 & -7 & 5 & 2 & -2 \\
2 & 0 & -4 & 2 & 1 & 3 \\
1 & -5 & -7 & 6 & 2 & -7
\end{array}\right) \\
& \left\lvert\, \begin{array}{l}
r_{1}=r_{1}-2 r_{2} \\
r_{3}=r_{3}-2 r_{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& v_{3}=-r_{3} \\
& \left.\begin{array}{l}
r_{2} \\
r_{1} \\
r_{3} \\
r_{4}
\end{array}\left(\begin{array}{ccccc|c}
1 & 0 & -2 & 1 & 1 & 2 \\
0 & 1 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right) \quad r_{4}=r_{4}-r_{3} \quad \begin{array}{c|ccccc|c}
r_{2} & \begin{array}{ccc}
1 & 0 & -2 \\
r_{1} & 1 & 1 \\
0 & 1 & 1 \\
\hline
\end{array} & -1 & 0 & 2 \\
r_{3} & 0 & 0 & 0 & 1 & 1 \\
r_{4} & 0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The simplified version of the original system of equations is:

$$
\left\{\begin{array}{l}
x_{1}-2 x_{3}+x_{4}=1 \\
x_{2}+x_{3}-x_{4}=2 \\
x_{5}=1
\end{array}\right.
$$

By setting $x_{3}=\alpha$ and $x_{4}=\beta$, the solution set is

$$
\left.\left\{(2 \alpha-\beta+1,-\alpha+\beta+2, \alpha, \beta, 1) \in \mathbb{R}^{5}: \alpha, \beta \in \mathbb{R}\right)\right\}
$$

Problem 2. Let $A=\left(\begin{array}{ccc}3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -1 & 1\end{array}\right), x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$, and $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$. For which values of b the system $A x=b$ has a solution?

Solution 2. We start with simplifying the system as in the previous problem:

for $\left\{b \in \mathbb{R}^{3}: b_{1}+b_{2}=5 b_{3}\right\}$, the system $A x=b$ has (at least) one solution.

Problem 3. Find the determinant of the following matrices:

$$
\begin{aligned}
A & =\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) & B=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 4 & 8
\end{array}\right) \\
C & =\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 3 & 2 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right) & D=\left(\begin{array}{cccccc}
1 & 2 & 3 & \ldots & n-1 & n \\
-1 & 0 & 3 & \ldots & n-1 & n \\
-1 & -2 & 0 & \ldots & n-1 & n \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
-1 & -2 & -3 & \ldots & -(n-1) & 0
\end{array}\right)
\end{aligned}
$$

Remark 1. Based on your questions in the class: Determinant is ONLY defined for square matrices.

Solution 3. The first equation shows how to find the determinant of a 2×2 matrix. The second one shows how to reduce the problem of finding a 3×3 determinant to the 2×2 case. The third equation reduces finding a 4×4 determinant to 3×3 determinants. Therefore you can see that following this pattern you can see how to find a $n \times n$ determinant by finding some number of 2×2 determinants.

here we $\operatorname{det} B=\oplus 1 \times \operatorname{det}\left(\begin{array}{ll}2 & 1 \\ 4 & 8\end{array}\right) \oplus 2 \times \operatorname{det}\left(\begin{array}{ll}3 & 1 \\ 2 & 8\end{array}\right) \oplus 3 \times \operatorname{det}\left(\begin{array}{ll}3 & 2 \\ 2 & 4\end{array}\right)=\ldots$ therefore
expand with
respect to $\longleftarrow \operatorname{det} C=\oplus 1 \times\left(\begin{array}{lll}2 & 3 & 4 \\ 3 & 2 & 1 \\ 1 & 0 & 1\end{array}\right) \oplus 0 \times\left(\begin{array}{lll}1 & 3 & 4 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right) \oplus 1 \times\left(\begin{array}{lll}1 & 2 & 4 \\ 4 & 3 & 1 \\ 0 & 1 & 1\end{array}\right)$ the sign is
the last row
because of the can of the

Note that:

- Determinant of a triangular matrix is the product of the elements on the diagonal,
- Row and column operations do not change the determinant.

By adding the first row of the matrix D to all the other rows you get the triangular matrix:

$$
\left(\begin{array}{cccccc}
1 & 2 & 3 & \ldots & n-1 & n \\
0 & 2 & \star & \ldots & \star & \star \\
0 & 0 & 3 & \star & \star & \star \\
\cdots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & n
\end{array}\right) \text { the star elements }
$$

Therefore $\operatorname{det} D=1 \times 2 \times 3 \times \ldots n=n$!

Problem 4. Let A and B be two $n \times n$ matrices. If $\operatorname{det} A=5$ and $\operatorname{det} B=7$, compute $\operatorname{det}\left(A^{2} B^{3} A\right)$.

Solution 4.

$$
\begin{aligned}
\operatorname{det}\left(A^{4} B^{3} A\right) & =\operatorname{det}\left(A^{5} B^{3}\right) \\
& =\operatorname{det}\left(A^{5}\right) \times \operatorname{det}\left(B^{3}\right) \\
& =(\operatorname{det} A)^{5} \times(\operatorname{det} B)^{3} \\
& =5^{5} \times 7^{3} .
\end{aligned}
$$

Note that:

- If A and B are two matrices such that $A B$ and $B A$ are both defined, then $\operatorname{det} A B=\operatorname{det} B A$,
- If A and B are two matrices of size $n \times n$ then $\operatorname{det} A B=\operatorname{det} A \times \operatorname{det} B$

Problem 5. Let $A=\left(\begin{array}{lll}a & 0 & 0 \\ d & b & 0 \\ f & e & c\end{array}\right)$ such that a, b, and c are nonzero, compute A^{-1}.

Remark 2. Based on your questions in the class: Inverse is ONLY defined for square matrices with nonzero determinant.

Solution 5. In this problem we show that the inverse of a lower triangular 3×3 matrix (if exists) is lower triangular and the entries on the diagonal of A^{-1} are the inverse of the corresponding entries on the diagonal of A. Moreover you can see a general method to find the inverse of a matrix.

Since none of a, b, or c are zero, $\operatorname{det} A=a b c \neq 0$ and the inverse A^{-1} exists. We attach an identity matrix of the proper size to A and make the reduced row echelon form of A that is going to be the identity matrix. The identity matrix that we attached at the beginning will turn to A^{-1} by this
process.

$$
\begin{aligned}
& r_{1}\left(\begin{array}{lll|lll}
a & 0 & 0 & 1 & 0 & 0 \\
d & b & 0 & 0 & 1 & 0 \\
r_{2} \\
r_{3} & e & c & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Problem 6. Let A be the matrix from the previous problem. Does the system $A x=b$ have a solution? Is the solution unique?

Solution 6. Yes, it has a solution and it is unique. Let $v=A^{-1} b$ then $A\left(A^{-1} b\right)=b$. Thus v is a solution. Now let w be a solution. We have $A w=b$. Multiplying both sides by A^{-1} gives $w=A^{-1} b=v$. Therefore the solution is unique.

Remark 3. If the matrix A is invertible then the system $A x=b$ has a unique solution. If the matrix A is not invertible the system can either have no solution or infinity many solutions. We have discussed both cases in the class.

Problem 7. For which values of α and β, the vectors $v_{1}=(\alpha, 1)$ and $v_{2}=$ $(0, \beta)$ form a basis for \mathbb{R}^{2}. In other words, v_{1} and v_{2} are linearly independent.

Solution 7. Two vectors v_{1} and v_{2} forming a basis for \mathbb{R}^{2} is equivalent to $\operatorname{det}\left(\begin{array}{ll}\alpha & 1 \\ 0 & \beta\end{array}\right) \neq 0$. Therefore, we need $\alpha \neq 0$ and $\beta \neq 0$.

Problem 8. Use the alternating symbol (Levi-Civita symbol) $\epsilon_{i j k}$ and the Kronecker delta $\delta_{i j}$ to show

$$
u \cdot(v \times w)=v \cdot(w \times u)=w \cdot(u \times v) .
$$

Solution 8. To be discussed in our next meeting.

$$
\begin{aligned}
& e_{i} e_{j} e_{k} \rightarrow \text { canonical basis } \\
& \delta_{i j}=\left\{\begin{array}{ll}
0 & i \neq j \\
1 & i=j
\end{array} \quad \varepsilon_{i j k}=\left\{\begin{array}{l}
\sigma^{+1} \\
\\
0
\end{array} \quad \begin{array}{l}
i=j \text { or } i=k \\
0 \\
\text { or } j=k
\end{array}\right.\right.
\end{aligned}
$$

No TE that the inner product of two vectors A, B is \longrightarrow sim over i, j
$A \cdot B=A_{i} \delta_{i j} B$ and the outer product:

$$
(A \times B)_{k}=\overbrace{A_{i} B_{j} \xi_{i j k}}^{\text {oo sum over ii }}
$$

Now $C \cdot(A \times B)=C_{i} \delta_{i j}(A \times B)_{j}=C_{i}^{\delta_{i j}\left(\xi_{m n j}\right.} A_{m}^{\left.\xi_{m n} B_{n}\right)}$

$$
\begin{aligned}
& =A_{m}\left(\xi_{n i m} B_{n} C_{i}\right)=A_{m} \delta_{m j}\left(\xi_{n i j} B_{n} C_{i}\right)= \\
& \quad A_{m} \delta_{m j}(B \times C)=A \cdot(B \times C)
\end{aligned}
$$

