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Problem 1. [3 pts] Solve the following system of linear of equations.
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Problem 2. [3 pts| Which values of r € R make the following system solvable? Find these

solutions.
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Problem 5. [24-242 pts| Invert matrices

how 4o et o matax A
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and solve (if possible) A;xz = b;, i = 1,2 with A; above and b; = , by =
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Problem 6. [3 pts] What are the values of parameters s,¢ € R such that
c=(5,7,5,2),c0=(1,3,2,1),¢c3 = (2,2,4,1)

of R* are linearly independent?
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The Gram—Schmidt process |edit]

We define the projection operator by

(v,u)

(0, u)

proj, (v) =

I

where (u, v) denotes the inner product of the vectors u and v.
This operator projects the vector v orthogonally onto the line
spanned by vector u. If u = 0, we define proj, (v) := 0. i.e., the
projection map proj, is the zero map, sending every vector to the
zero vector.

The Gram—-Schmidt process then works as follows:
0 Z
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u;
u; = vy, € =
[ ||
. u2
u; = vp — proj,, (va), e =
[ |
. . u3
u3 = v3 — proj,, (v3) — proj,, (v3), e; =
s ]
. . . Uy
uy = V4 — proj,, (vV4) — Projy,, (va) — proj,, (va), ey = ™
4
k-1 u
Up = Vg — Zpl‘ojuj (Vk), €r = .
=1 |

The sequence uy, ..., ug is the required system of orthogonal vectors, and the normalized vectors ey, ..., e, form an orthonormal set. The
calculation of the sequence uy, ..., ugis known as Gram—-Schmidt orthogonalization, while the calculation of the sequence ey, ..., €, is known as
Gram-Schmidt orthonormalization as the vectors are normalized.
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Example [edit]

Euclidean space |edit]

Consider the following set of vectors in R? (with the conventional inner product)

o= (- ()}

Now, perform Gram—Schmidt, to obtain an orthogonal set of vectors:

e ()
o= 2) i (3 (2) -5 (25

We check that the vectors u4 and u, are indeed orthogonal:

=2 £t

noting that if the dot product of two vectors is 0 then they are orthogonal.

For non-zero vectors, we can then normalize the vectors by dividing out their sizes as shown above:
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First week

In all of the following problems we are working over the field of real
numbers. (Note that the equation z?+1 = 0 has no solution over R, however,
it has two solutions +i over C)

Problem 1. Determine whether the following systems of equations have any
solutions? If no, explain why, and if yes write all the solutions.

20 +y =0,
y+ao=1,
20 —y = 0.

2x1 — 319 — Tx3 + by + 2005 = —2,
r1 — 209 — 4wz 4 324 + 15 = —2,
201 — 4x9 + 5 + 224 = 3,

r1 — dxy — (w3 + 624 + 225 = —7

Solution 1. The first system has no solution because adding up the first
and the last equations result in

dr=0=2x=0
=y=0 (since 2x +y = 0)
=1=0 (since x +y = 0)
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solve it, we can form the reduced row echelon form by doing row operations:
X )/Z Yo X 4 \(S-

i 2 -3 =T 5 2|-2 nf1 =2 —4 3 1|-2
Ll 1 -2 43 12| <72 nl 2 =3 -7 5 2] -2
sl2 0 4213 5l 2 0 -4 2 1]3
g\ 1 =5 =T 6 2]-T P\ 1 =5 =7 6 2|7
2 /10 =2 1 1|2 \23=%% vi/f1 -2 -4 3 1 |=2
rfo1r 1 -1 0|2 | £ a0 1 1 -1 012
{00 0 0 —1[-1 ., G0 4 4 -4 1|7
r4000011”71’2*/@}‘0—3—331—5
@”'3
ref1 0 =2 1 1|2 o1 0 -2 1 1|2
y 01 1 —10/2 Te=v_~v= 01 1 -1 0]|2
Bloo 0o o0 1)1 w00 0 0 1|1
PAO 0 0 0 11 7@000000

The simplified version of the original system of equations is:

331—21'3+£U4:1
.T2+I3—$4:2

Ty = 1
By setting z3 = a and x4, = (3, the solution set is

{a—B+1,—a+B+2,a,68,1) €R’: a,3€R)}





3 —1 2 T bl

Problem 2. Let A=[2 1 1]|,z=|22]|,and b= |by|. For which
1 -1 1 T3 b3

values of b the system Az = b has a solution?

Solution 2. We start with simplifying the system as in the previous problem:

o3 -1 2| T £—= Ta Y3/ 1 —1 1/|b4
Vol 201 1]b > Wl 2 1 1|by
Yg 1 —1 1 b3 Y‘| 3 —1 2 bl

3
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5 by — 2b3
0 0 | by +by—5bs
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for {b € R®: by + by = 5b3}, the system Az = b has (at least) one solu-
tion.

Problem 3. Find the determinant of the following matrices:

1 2 3
A:(; i) B=|3 2 1
2 4 8
1 2 3 ... n—1 n
1 23 4 -1 0 3 ... n—1 n
-1 -2 0 ... n—1 n
C— 4 3 2 1 D_
101 01 o
1 010
-1 -2 -3 ... —(n—l) 0

Remark 1. Based on your questions in the class: Determinant is ONLY
defined for square matrices.





Solution 3. The first equation shows how to find the determinant of a 2 x 2
matrix. The second one shows how to reduce the problem of finding a 3 x 3
determinant to the 2 x 2 case. The third equation reduces finding a 4 x 4
determinant to 3 x 3 determinants. Therefore you can see that following this
pattern you can see how to find a n x n determinant by finding some number
of 2 x 2 determinants. CYEVEWARR: AT ~

detA:@1X4@2x3:—2 ﬁco\\”“@' (,@; 4—\:\/
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Note that:

e Determinant of a triangular matrix is the product of the elements on
the diagonal,

e Row and column operations do not change the determinant.

By adding the first row of the matrix D to all the other rows you get the

triangular matrix:
° e 5’*@# Qk@m@/ﬂ%

7
are M/}

Therefore det D =1x2x3 %X ...n=n!





Problem 4. Let A and B be two n x n matrices. If det A =5 and detB =7,
compute det(A2B3A).

Solution 4.

det(A*B*A) = det(A°B?)
= det(A°) x det(B?)
= (det A)5 x (det B)3
=5 x 7.
Note that:

e If A and B are two matrices such that AB and BA are both defined,
then det AB = det BA,

e If A and B are two matrices of size n X n then det AB = det A x det B

a 0 0
Problem 5. Let A= | d b 0| such that a,b, and ¢ are nonzero, compute
f e c

AL

Remark 2. Based on your questions in the class: Inverse is ONLY defined
for square matrices with nonzero determinant.

Solution 5. In this problem we show that the inverse of a lower triangular
3 x 3 matrix (if exists) is lower triangular and the entries on the diagonal
of A7! are the inverse of the corresponding entries on the diagonal of A.
Moreover you can see a general method to find the inverse of a matrix.

Since none of a,b, or ¢ are zero, det A = abc # 0 and the inverse A~!
exists. We attach an identity matrix of the proper size to A and make the
reduced row echelon form of A that is going to be the identity matrix. The

identity matrix that we attached at the beginning will turn to A~! by this



process.
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Problem 6. Let A be the matrix from the previous problem. Does the
system Az = b have a solution? Is the solution unique?

Solution 6. Yes, it has a solution and it is unique. Let v = A~!b then
A(A7') = b. Thus v is a solution. Now let w be a solution. We have
Aw = b. Multiplying both sides by A~! gives w = A~'b = v. Therefore the
solution is unique.

Remark 3. If the matrix A is invertible then the system Az = b has a
unique solution. If the matrix A is not invertible the system can either have
no solution or infinity many solutions. We have discussed both cases in the
class.





Problem 7. For which values of o and f3, the vectors v; = (a, 1) and vy =
(0, 8) form a basis for R%. In other words, v; and vy are linearly independent.

Solution 7. Two vectors v; and v, forming a basis for R? is equivalent to

det (g é) # 0. Therefore, we need v # 0 and (8 # 0.

Problem 8. Use the alternating symbol (Levi-Civita symbol) €;;; and the
Kronecker delta d;; to show

u.(v X w) =v.(w x u) =w.(uxv).

Solution 8. To be discussed in our next meeting.
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